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Direct numerical simulations of ten turbulent time-evolving strained wakes have
been generated using a pseudo-spectral numerical method. In all the simulations, the
strain was applied to the same (previously generated) initial developed self-similar
wake flow field. The cases include flows in which the wake is subjected to various
orientations of the applied mean strain, including both plane and axisymmetric strain
configurations. In addition, for one particular strain geometry, cases with differing
strain rates were considered. Although classical self-similar analysis does yield a self-
similar solution for strained wakes, this solution does not describe the observed flow
evolution. Instead, the wake mean velocity profiles evolve according to a different
‘equilibrium similarity solution’, with the strained wake width being determined by the
straining in the inhomogeneous cross-stream direction. Wakes that are compressed
in this direction eventually exhibit constant widths, whereas wakes in cases with
expansive cross-stream strain ultimately spread at the same rate as the distortion
caused by the applied strain. The shape of the wake mean velocity deficit profile is
nearly universal. Although the effect of the strain on the mean flow is pronounced
and rapid, the response of the turbulence to the strain occurs more slowly. Changes
in the turbulence intensity cannot keep pace with changes in the mean wake velocity
deficit, even for relatively low strain rates.

1. Introduction
The effects of large-scale straining on turbulence have long been of interest. Early

experiments designed to study isotropic turbulence led to the discovery that straining,
applied to a flow by wind tunnel contractions, could significantly alter grid turbulence
anisotropy. In order to more fully understand the effects of straining, experiments were
devised to examine the impact of uniform straining on homogeneous grid turbulence.
Townsend (1954) used a duct of constant cross-sectional area (after accounting
for boundary layer growth) to study the impact of uniform plane strain on grid
turbulence for total strains of up to 4. He compared the observed behaviour with
the predictions of rapid distortion theory and found that this linear theory predicted
the initial response of the turbulence to strain fairly well. The strain resulted in a
slower turbulence decay, with the velocity component in the direction of compression
being especially amplified relative to its value in the unstrained flow, while that in
the direction of expansion decayed more rapidly. Similar results were observed by
Tucker & Reynolds (1968) and Marechal (1972), who achieved total strains of 6.0
and 13.3, respectively, in their experiments. Unlike the results of Townsend (1954),
however, their data suggested continued change of the Reynolds stress anisotropies
rather than asymptotic structural equilibrium. Other strain configurations, such as
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axisymmetric contraction (Uberoi 1956; Reynolds & Tucker 1975) and axisymmetric
expansion (Reynolds & Tucker 1975) have also been investigated.

The impact of uniform irrotational straining on inhomogeneous flows has also been
of interest. Reynolds (1962) used the distorting wind tunnel of Townsend (1954) to
study the effect of a uniform and constant plane strain on the wakes of three circular
cylinders of different diameters, placed at various streamwise locations relative to the
distorting tunnel inlet. The primary goal of these experiments was to assess whether a
mathematically derived self-similar solution was achieved in practice. The distorting
section was placed such that the wakes were compressed in the cross-stream direction
and expanded along their span. Reynolds (1962) felt that his data were consistent with
self-similar evolution in some cases, depending on the organization of the turbulence
at the point where the strain was applied and the relative importance of the shear
and strain turbulence production terms. Later, however, Keffer (1965) repeated these
experiments with more detailed turbulence measurements and concluded that a self-
similar evolution was never observed. Keffer (1967) did similar experiments but
changed the orientation of the distorting duct so as to achieve strain of the opposite
sign. A similar strain configuration, but with non-negligible streamwise straining, was
employed by Elliott & Townsend (1981). Self-similar evolution was not observed in
these two experiments either.

Townsend (1954) selected his tunnel geometry in an attempt to produce the spa-
tially evolving analogue of a time-evolving flow undergoing constant and uniform
straining. Although well-suited for numerical simulation, time-evolving homogeneous
flows are difficult to set up experimentally. Instead, experimentalists trade the strict
streamwise inhomogeneity of the time-evolving problem for a statistically stationary
spatially evolving flow with weak (hopefully negligible) streamwise inhomogeneity.
The temporal evolution is replaced by a spatial evolution via a convective velocity
down the experimental wind tunnel. For straining in a plane normal to the mean flow
direction, as strived for in the above experiments, the convective velocity should be
constant and the streamwise pressure gradient zero. In practice, there is streamwise
variation in the mean streamwise velocity near the inlet and exit of the distorting
duct, at least in part as a result of flow separation at these locations. Significant
streamwise variations in the convective velocity are associated with local streamwise
pressure gradients (as given by the Bernoulli equation) and cause departures from the
idealized problem.

Streamwise pressure gradients in spatially evolving flows can be cast as stream-
wise strains in their temporally evolving analogues. In fact, other forms of ‘strain’,
besides those in planes normal to the flow direction and constant in time, may be
more closely related to problems of practical interest. Research on wakes in adverse
pressure gradients has been of particular interest to the aircraft industry because of
the occurrence of such flows in multi-component airfoils designed to produce high
lift (see, for example, Smith 1975). Because of this, many experiments have been
performed with this particular application in mind. Zhou & Squire (1985) studied
not only wake development in an adverse pressure gradient, but also the wake’s
interaction with a nearby turbulent boundary layer. Hill, Schaub & Senoo (1963) and
Hoffenberg, Sullivan & Schneider (1995) demonstrated that strong enough adverse
pressure gradients can cause the mean wake velocity deficit to increase in magnitude,
even to the point of causing local flow reversal or ‘wake bursting’, which limits the
maximum lift obtainable by high-lift airfoils.

Several other experimental studies have investigated the impact of streamwise pres-
sure gradients on the evolution of plane wakes. By ‘appropriately tailoring’ adverse
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pressure gradients to have a power-law dependence on the streamwise coordinate,
Gartshore (1967) was able to generate two ‘nearly self-preserving’ wakes that spread
linearly with downstream distance. Narasimha & Prabhu (1972) and Prabhu &
Narasimha (1972) studied the response of plane wakes to ‘nearly impulsive’ pressure
gradients (favourable, adverse, and combinations of the two), as well as the ensuing
‘slow relaxation’ to equilibrium after the pressure gradient was removed (note, how-
ever, that the experimental results of Wygnanski, Champagne & Marasli (1986) and
the computational results of Ghosal & Rogers (1997) and Moser, Rogers & Ewing
(1998) suggest that a universal equilibrium may not exist). Narasimha & Prabhu
concluded that such wakes did not follow their derived self-similar solution when the
pressure gradient was not small. Instead they found that while the pressure gradient
was applied, the turbulence responded to it as if to a sudden distortion, at least
qualitatively.

All these experiments on wakes in pressure gradients have rather arbitrary stream-
wise pressure distributions, in some cases also poorly documented, making direct
comparison with the simulations presented here difficult. By using a wind tunnel with
adjustable sidewalls, Liu, Thomas, & Nelson (1999) examined the evolution of plane
wakes in constant streamwise pressure gradients, both adverse and favourable. In this
more fundamental model problem, the effects of a changing pressure gradient have
been eliminated. Although not equivalent to the constant-strain-rate cases considered
here (see Appendix A), the distorting tunnel geometry used by Liu et al. (1999)
for some of their constant-pressure-gradient flows is not far from that required for
constant strain rate and similarities between these two cases are apparent.

Other examples of ‘strained’ free shear layers have also been studied experimentally.
These include strained mixing layers (Keffer et al. 1978), wakes subjected to curvature
as well as pressure gradients (Nakayama 1987 and references therein), and wakes
and mixing layers subjected to cross-plane shear (Atsavapranee & Gharib 1994, 1997,
Nayeri et al. 1996 and Beharelle et al. 1996) among others.

Despite the practical relevance of strained free shear flows, there is a need for
detailed data on these flows that is of general utility. The issue of whether such flows
do or can evolve self-similarly still needs further clarification. If, as several experiments
indicate, self-similar evolution is not typically observed, then an understanding of how
the flows do respond to imposed strain needs to be developed. This should include
not only the impact on turbulent statistics, but also on flow structure. If the flow
evolution is not consistent with the classical self-similar solution, can a more general
equilibrium similarity state describe the flow evolution?

Most inhomogeneous free shear flows of practical interest are spatially developing.
However, numerical simulations of the corresponding time-evolving flows can achieve
higher Reynolds numbers and more fully developed turbulence while using cleaner
boundary conditions than those of the spatially evolving problem (e.g. Rogers &
Moser 1994 and Moser et al. 1998). Although the temporally evolving problem
possesses symmetries not found in the corresponding spatially evolving flow, the
vortex dynamics of these two flows are similar (e.g. Rogers, Moser & Buell 1990).
Because of these advantages, the time-evolving problem is chosen for the numerical
simulations in this work.

Time-evolving plane wakes subjected to constant strain rates are conceptually
the simplest form of strained free shear layer. They lack the complicating effects of
streamwise inhomogeneity and time-varying strain rate, but maintain the fundamental
character of strained free shear layers. Turbulence is produced both by shear and
by strain, the relative importance of these two mechanisms not necessarily being the
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same throughout the flow evolution. These simplified flows are well-suited for direct
numerical simulations. Such simulations are in turn ideal for providing a complete
description of the turbulence and precise control of the initial conditions. Unlike the
experimental situation, the strain in the computations can be applied instantly, without
local flow separation and other irregularities. The goal of the current investigation
is to study the response of a developed self-similar plane wake to suddenly imposed
strains of various orientations and magnitudes and to compare this response to that
predicted by self-similar analysis. All terms in the Reynolds stress balance equations
have been computed to provide a database helpful for turbulence model development
and flow visualization has been employed to understand the impact of strain on the
wake structure.

In § 2 the governing equations for the time-evolving strained wake are developed and
self-similar solutions of these equations are derived. Section 3 contains a description of
the numerical method used to generate the numerical simulations (the mathematical
details being relegated to an appendix), along with a description of the cases that are
described in this paper. Results derived from the simulated flow fields, including flow
visualization, and a comparison with results of experimental work in similar flows
are given in § 4. Conclusions are summarized in § 5. Three appendices, which include
the mathematical details of the numerical method, an exact solution for laminar
strained free shear layers, and additional turbulence statistics from the simulated flows
(anisotropy measures, terms in the Reynolds stress balance equation) are available
from the JFM Editorial Office at Cambridge rather than being included here.

2. The strained time-evolving wake
2.1. The governing equations

The governing equations for the strained plane wakes simulated here are the incom-
pressible Navier–Stokes equations given by

∂Ui

∂xi
= 0, (2.1)

∂Ui

∂t
+Uj

∂Ui

∂xj
+

1

ρ

∂P

∂xi
= ν

∂2Ui

∂xj∂xj
, (2.2)

where Ui represents the ith component of the velocity vector, P is the pressure, ρ the
constant density, and ν the constant kinematic viscosity. Decomposing the flow into
mean (Ui and P̄ ) and fluctuating (u′i and p′) parts, substituting into the Navier–Stokes
equations, and averaging, yields the mean flow equations

∂Ui

∂xi
= 0, (2.3)

∂Ui

∂t
+Uj

∂Ui

∂xj
+
∂u′iu′j
∂xj

+
1

ρ

∂P̄

∂xi
= ν

∂2Ui

∂xj∂xj
. (2.4)

The time-evolving wakes studied here develop in time and are statistically homo-
geneous in the streamwise x1 and spanwise x3 directions, i.e. there are no spatial
gradients of turbulent statistics in these coordinate directions. The cross-stream x2

direction is inhomogeneous and thus mean statistics depend on the x2 location. For
a time-evolving plane wake, the mean velocity deficit is given by U1 = U1(x2, t). The
addition of a spatially uniform (but possibly varying in time) mean strain to the
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mean velocity field adds another component given by ∂Ui/∂xj = aij(t). Considering
irrotational mean strains where only a11, a22, and a33 may be non-zero, and using x,
y, z, U, V , and W for x1, x2, x3, U1, U2, and U3 (these two notations will be used
interchangeably here), the mean velocity field is given by

U = a11(t)x+Uw(y, t), (2.5a)

V = a22(t)y, (2.5b)

W = a33(t)z, (2.5c)

where the subscript w is used to denote the wake component of the mean velocity.
Note that for the computations described here, the wake component of the spanwise
velocity Ww is not forced to be zero, although it does remain small throughout all the
computations. Given a larger statistical sample (or a bigger computational domain)
this average would approach zero. In order to compare to this ideal case, the small
‘average’ spanwise velocity is considered here to be a fluctuation around a ‘true’
average of zero.

By substituting the above mean velocity field into the Navier–Stokes equations and
taking advantage of statistical homogeneity in the x- and z-directions, the following
mean field equations are obtained (with u′, v′, and w′ being used in place of u′1, u′2,
and u′3)

∂U

∂x
+
∂V

∂y
+
∂W

∂z
= a11(t) + a22(t) + a33(t) = 0, (2.6)

∂a11

∂t
x+

∂Uw

∂t
+ [a11(t)x+Uw]a11(t) + a22(t)y

∂Uw

∂y
+
∂u′v′

∂y
+

1

ρ

∂P̄

∂x
= ν

∂2Uw

∂y2
, (2.7a)

∂a22

∂t
y + a2

22(t)y +
∂v′2

∂y
+

1

ρ

∂P̄

∂y
= 0, (2.7b)

∂a33

∂t
z + a2

33(t)z +
∂v′w′

∂y
+

1

ρ

∂P̄

∂z
= 0. (2.7c)

The last equation can be further simplified by noting that the Reynolds stress v′w′ is
zero because of flow symmetry. In the absence of a wake (Uw = 0), the pressure field
for the corresponding laminar strain problem is given by

Ps = P0 − ρ

2

[(
da11

dt
+ a2

11

)
x2 +

(
da22

dt
+ a2

22

)
y2 +

(
da33

dt
+ a2

33

)
z2

]
, (2.8)

where P0 is the pressure at the origin of the coordinate system. Defining P̄w = P̄ −Ps
and substituting into equations (2.7) yields

∂Uw

∂t
+ a11(t)Uw + a22(t)y

∂Uw

∂y
+
∂u′v′

∂y
+

1

ρ

∂P̄w

∂x
= ν

∂2Uw

∂y2
, (2.9a)

∂v′2

∂y
+

1

ρ

∂P̄w

∂y
= 0, (2.9b)

1

ρ

∂P̄w

∂z
= 0. (2.9c)

All terms in these three equations depend only on y and t, implying that the pressure
P̄w can be at most linear in x. However, for the boundary conditions of this problem,
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the integrated (across the wake from y = −∞ to y = ∞) mean momentum equation
(2.9a) cannot balance unless P̄w does not depend on x. Thus, for the flows considered
here, ∂P̄w/∂x = 0 and P̄w = −ρv′2.

The time evolution of the area under the velocity deficit profile (proportional to
the mass flux deficit) can be obtained by integrating equation (2.9a) from y = −∞ to
y = ∞. Defining

Aw(t) =

∫ ∞
−∞
Uw(y, t) dy, (2.10)

taking advantage of both the vanishing Reynolds shear stress and wake mean velocity
gradients at infinity, and noting that Uw decays faster than 1/y at large y, one can
derive

Aw(t) = A0
w exp

∫ t′=t

t′=0

[a22(t
′)− a11(t

′)] dt′, (2.11)

where A0
w = Aw(t = 0). For the case of constant strain rate, this reduces to the simple

exponential form

Aw(t) = A0
we(a22−a11)t. (2.12)

In the absence of strain, equation (2.11) reduces to the conservation of mass flux
deficit for a time-evolving plane wake.

By subtracting the mean equations (2.3) and (2.4) from the full Navier–Stokes
equations equations (2.1) and (2.2), the following equations governing the fluctu-
ating velocity components are obtained (reverting to Cartesian tensor notation for
compactness):

∂u′i
∂xi

= 0, (2.13)

∂u′i
∂t

+Uj

∂u′i
∂xj

+ u′j
∂Ui

∂xj
+
∂u′iu′j
∂xj

− ∂u′iu′j
∂xj

+
1

ρ

∂p′

∂xi
= ν

∂2u′i
∂xj∂xj

. (2.14)

Because of the mean strain, the second term in equation (2.14) has a coefficient on the
fluctuating velocity derivative that has explicit dependence on the spatial coordinates
xi. The consequences of this for the numerical method are discussed in § 3.1.

From the fluctuating equation (2.14), the equation for the evolution of the Reynolds
stress tensor Rij = u′iu′j can be derived:

∂u′iu′j
∂t

+Uk

∂u′iu′j
∂xk

= −
(
u′iu′k

∂Uj

∂xk
+ u′ju′k

∂Ui

∂xk

)
− ∂u′iu′ju′k

∂xk
+
p′

ρ

(
∂u′i
∂xj

+
∂u′j
∂xi

)
− 1

ρ

(
∂p′u′i
∂xj

+
∂p′u′j
∂xi

)
+ ν

∂2u′iu′j
∂xk∂xk

− 2ν
∂u′i
∂xk

∂u′j
∂xk

. (2.15)

Incorporating statistical homogeneity in x1 and x3 and the form of the mean velocity
field (2.5) yields

∂u′iu′j
∂t

+ a22(t)x2

∂u′iu′j
∂x2

= Pij +Tij +Wij +Vij + εij , (2.16)

where the production is given by

Pij = −
(
u′iu′k

∂Uj

∂xk
+ u′ju′k

∂Ui

∂xk

)
, (2.17)
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the turbulent transport (both turbulent diffusion and pressure diffusion) by

Tij = − ∂

∂x2

(
u′iu′ju′2 +

1

ρ
(δj2p′u′i + δi2p′u′j)

)
, (2.18)

the pressure–strain by

Wij =
p′

ρ

(
∂u′i
∂xj

+
∂u′j
∂xi

)
, (2.19)

the viscous diffusion by

Vij = ν
∂2u′iu′j
∂x2∂x2

, (2.20)

and the dissipation by

εij = −2ν
∂u′i
∂xk

∂u′j
∂xk

. (2.21)

The four non-zero production terms are

P11 = −2a11(t)u′2 − 2u′v′
∂Uw

∂y
, (2.22a)

P22 = −2a22(t)v′2, (2.22b)

P33 = −2a33(t)w′2, (2.22c)

P12 = −(a11(t) + a22(t))u′v′ − v′2 ∂Uw

∂y

= a33(t)u′v′ − v′2 ∂Uw

∂y
. (2.22d)

Note that the wake shear results in production of only u′2 and u′v′, whereas the mean
strain may, depending on the geometry of the strain, cause ‘production’ in any of the
equations. Depending on the sign of the strain, these strain ‘production’ terms may
actually decrease some of the Reynolds stresses rather than augment them. Twice the

turbulent kinetic energy (per unit mass) is defined here as q2 = u′iu′i = u′2 + v′2 + w′2
and the dissipation rate of turbulent kinetic energy is denoted by ε = −εii/2.

In all the simulations, the evolution of a passive scalar quantity is calculated along
with the development of the hydrodynamic field. The governing equation for this
passive scalar is given by

∂T

∂t
+Uj

∂T

∂xj
= γ

∂2T

∂xj∂xj
, (2.23)

where T is the passive scalar and γ is the molecular scalar diffusivity, which for all
the simulations is chosen such that the Prandtl number Pr = ν/γ = 0.7. Although
many interesting scalar statistics can be computed from the scalar fields, up to this
point the scalar has only been used for flow visualization, with the scalar marking
the level of mixing between the two free streams (T = 0 below the wake and T = 1
above it).

2.2. Self-similarity

In the absence of strain, developed plane wakes are observed to evolve self-similarly.
Such self-similar evolution was also observed in previous direct numerical simulations
of plane wakes by Moser et al. (1998). Here we explore the possibility of self-similar
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evolution for time-evolving strained plane wakes. The approach used is that developed
by George (1989, 1995) and has been used previously for unstrained wakes by Moser
et al. (1998). In § 2.2.1 the classical self-similar solution, in which all terms in the
governing equations except the viscous terms scale in the same way, is derived.
Following this, in § 2.2.2, more general equilibrium similarity solutions are sought.
In these solutions, groups of terms in the governing equations combine together to
scale like other groups or terms in the same equation. These more general similarity
solutions exhibit more complex behaviour, such as the various Reynolds stresses
scaling differently from each other and not necessarily like the square of the wake
velocity deficit. Thus, unlike with the classical self-similar solution, the flow evolution
is not characterized by a single velocity scale.

2.2.1. Classical self-similarity

Assuming that the wake mean velocity deficit profile can be described by a time-
varying magnitude Us(t) and a characteristic profile shape of a specified width δ(t), it
can be written as

Uw(y, t) = −Us(t)f(η), (2.24)

where η = y/δ(t) is the scaled cross-stream coordinate. Note that the velocity deficit
goes to zero in the free streams in the time-evolving problem. Substituting into the
definition of Aw (2.10) we have

Aw(t) = −Us(t)δ(t)

∫ ∞
−∞
f(η) dη (2.25)

and then from equation (2.11)

Us(t)δ(t) = U0
s δ

0 exp

(∫ t′=t

t′=0

[a22(t
′)− a11(t

′)] dt′
)
, (2.26)

where U0
s = Us(t = 0) and δ0 = δ(t = 0) are the values of Us and δ at the virtual

origin of the self-similar period required to match the observed evolution. Thus if the
wake mean deficit profile is self-similar, the product of the deficit magnitude and the
wake width must follow the above exponential evolution.

Substituting (2.24) into the mean momentum equation (2.9a) and defining u′v′ =
K12(t)k12(η) for the self-similar Reynolds shear stress profile yields[

Us(t)

δ(t)

dδ

dt

]
η

df

dη
−
[

dUs

dt

]
f(η)− [a11(t)Us(t)]f(η)− [a22(t)Us(t)]η

df

dη

+

[
K12(t)

δ(t)

]
dk12

dη
= −ν

[
Us(t)

δ2(t)

]
d2f

dη2
, (2.27)

where the bracketed terms contain all the time-dependent portions of the equation.
Assuming none of the above terms is negligible, self-similarity will result if all the
bracketed terms are proportional (it can also occur if a certain subset of the terms
grow at a different rate but offset each other, as discussed later).

For complete self-similarity, all the terms in other derived transport equations must
also exhibit self-similar behaviour (or they must be negligible in comparison to other
terms in each equation). Here the Reynolds stress equation (2.16) will be examined to
search for additional constraints on the possible self-similar evolution. Again reverting



Strained plane wakes 61

to Cartesian tensor notation for compactness, and defining

u′αu′β = Kαβ(t)kαβ(η), (2.28a)

Tαβ = − ∂

∂x2

(Trαβ(t)trαβ(η)), (2.28b)

Wαβ = Παβ(t)παβ(η), (2.28c)

and

εαβ = Dαβ(t)dαβ(η) (2.28d)

(where there is no summation on repeated Greek indices†) the Reynolds stress
transport equation (2.16) becomes

−
[
Kαβ(t)

δ(t)

dδ

dt

]
η

dkαβ
dη

+

[
dKαβ

dt

]
kαβ + [a22(t)Kαβ(t)]η

dkαβ
dη

= Pαβ −
[
Trαβ(t)

δ(t)

]
dtrαβ
dη

+ [Παβ(t)]παβ(η)− [Dαβ(t)]dαβ(η) + ν

[
Kαβ(t)

δ2(t)

]
d2kαβ

dη2
, (2.29)

where Pαβ is given by

P11 = −2[a11(t)K11(t)]k11(η) + 2

[
K12(t)Us(t)

δ(t)

]
k12(η)

df

dη
, (2.30a)

P22 = −2[a22(t)K22(t)]k22(η), (2.30b)

P33 = −2[a33(t)K33(t)]k33(η), (2.30c)

P12 = −[(a11(t) + a22(t))K12(t)]k12(η) +

[
K22(t)Us(t)

δ(t)

]
k22(η)

df

dη
. (2.30d)

Additionally, continuity imposes another constraint on the pressure–strain:

W11 +W22 +W33 = 0 (2.31a)

or

[Π11(t)]π11(η) + [Π22(t)]π22(η) + [Π33(t)]π33(η) = 0, (2.31b)

which implies that the bracketed terms, if not negligible, are proportional for self-
similarity.

In the experiments of Reynolds (1962), Keffer (1965) and Keffer (1967) and in all
of the computations described here, the strain rate aij is constant in time. For such
cases equation (2.26) yields

Us(t)δ(t) = U0
s δ

0e(a22−a11)t. (2.32)

Dividing equation (2.27) by the non-zero wake deficit Us(t) yields[
1

δ

dδ

dt

]
η

df

dη
−
[

1

Us

dUs

dt

]
f(η)− [a11]f(η)− [a22]η

df

dη
+

[
K12

Usδ

]
dk12

dη
= −ν

[
1

δ2

]
d2f

dη2
.

(2.33)

† The analysis could be done using the tensorially correct expression u′iu′j = Kijmn(t)kmn(η),

which replaces u′iu′j by the sum of nine terms. Equation (2.39) would then be generalized to
Kijmn(t) ∝ exp(Cijmnt) and the K12 term in equation (2.27) would be replaced by nine terms, all
proportional to each other and thus replaceable by a single term as is done above. Similar reasoning
applies to the analysis of the Kαβ terms in the Reynolds stress transport equation (2.29).
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For the case of constant strain rate examined here, the time-dependent portions of the
third and fourth terms of equation (2.33) are constant. For self-similar solutions in
which all the terms in this equation are important, all the bracketed time-dependent
terms should be proportional and therefore also constant.† Thus the various scales
must grow exponentially in time and can be defined as

δ(t) ∝ exp(Cδt) (2.34a)

Us(t) ∝ exp(CMt) (2.34b)

K12(t) ∝ Us(t)δ(t) ∝ exp(C12t). (2.34c)

The bracketed portion of the viscous term is not, in general, constant. However,
the moderately high Reynolds numbers of the simulations and the absence of any
solid boundaries in these free shear flows result in viscous terms that are typically
negligible. Because of this, self-similar evolution can be achieved for at least some
time even if the time dependence of the viscous term is different from the rest of the
terms in the mean momentum equation. Thus, this term imposes no constraint on the
self-similar analysis. It should be noted, however, that when Cδ = 0 (i.e. the strained
wake is of constant width) the viscous terms will change in proportional to the other
terms, even if they are small in magnitude. From equation (2.32) it is clear that

CM + Cδ = a22 − a11. (2.35)

Combined with the mean momentum equation result (2.34c) this yields

C12 = CM + Cδ = a22 − a11. (2.36)

Dividing the Reynolds stress transport equation (2.29) by the non-zero Reynolds
stress magnitude Kαβ(t) yields

−
[

1

δ

dδ

dt

]
η

dkαβ
dη

+

[
1

Kαβ

dKαβ

dt

]
kαβ + [a22]η

dkαβ
dη

= P̃αβ −
[
Trαβ

Kαβδ

]
dtrαβ
dη

+

[
Παβ

Kαβ

]
παβ(η)−

[
Dαβ

Kαβ

]
dαβ(η) + ν

[
1

δ2

]
d2kαβ

dη2
, (2.37)

where P̃αβ is given by

P̃11 = −2[a11]k11(η) + 2

[
K12Us

K11δ

]
k12(η)

df

dη
, (2.38a)

P̃22 = −2[a22]k22(η), (2.38b)

P̃33 = −2[a33]k33(η), (2.38c)

P̃12 = −[(a11 + a22)]k12(η) +

[
K22Us

K12δ

]
k22(η)

df

dη
. (2.38d)

The two bracketed terms in each equation that directly involve the strain rate aij
are constant when the strain rate is constant, as is the bracketed portion of the first
term, given the form of δ found above in equation (2.34a). Thus, if all the terms
are proportional, the bracketed portions of the other terms should also be constant,
implying

Kij(t) ∝ exp(Cijt). (2.39)

† This differs from the self-similar evolution of an unstrained wake, in which the first two and
last two bracketed terms in equation (2.33) are not constant, but proportional to 1/t.
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This is consistent with equation (2.34c), which resulted from analysis of the mean
momentum equation. As with the mean momentum equation, the bracketed coefficient
of the viscous term is generally not constant and can only evolve self-similarly for
strained wakes of constant thickness. However, the simulations confirm that this
viscous diffusion term is negligible in comparison to the other terms in the Reynolds
stress balance, and this constraint on the similarity analysis can therefore be dropped.

Additional constraints on the self-similar solution result from the shear production

terms in the u′21 and u′1u′2 equations. For the bracketed portions of these terms to be
constant,

C12 + CM − C11 − Cδ = 0 (2.40)

and

C22 + CM − C12 − Cδ = 0. (2.41)

Combined with the result from the mean momentum equation, C12 = CM + Cδ , the
constraint from the u′21 equation becomes 2CM = C11, indicating that for self-similarity

u′21 ∝ U2
s . Combining the same mean momentum equation result with the constraint

from the u′1u′2 equation yields 2Cδ = C22. The time variation of the turbulent transport,
pressure–strain, and dissipation terms can also be determined from equation (2.37) if
these terms are evolving in proportion to the other terms in the equation.

Finally, the pressure–strain condition (2.31b) implies that

[Π11(t)] ∝ [Π22(t)] ∝ [Π33(t)], (2.42)

which, together with the scalings from the Reynolds stress transport equation, leads
to

K11 ∝ K22 ∝ K33 (2.43)

or

C11 = C22 = C33 (2.44)

(unless some of the pressure–strain terms are negligible). With the previous results,
this yields Cδ = CM . Thus, if only the viscous terms are negligible, the self-similar
solution is

Cδ = CM = (a22 − a11)/2, (2.45a)

C11 = C22 = C33 = C12 = a22 − a11. (2.45b)

Intuitively this makes sense, because for self-similar evolution one would expect the
shear and strain to be in balance; thus the constant-strain-rate case considered here
should also have constant shear rate for self-similarity, as implied by CM = Cδ . Note
that the above solution also implies that all the Reynolds stresses grow at the same
rate and that their anisotropy is constant. This solution is completely analogous to
that found by Reynolds (1962) and Keffer (1965) for the spatially evolving case.

From equation (2.45a) it is clear that a constant-width strained wake (Cδ = 0) is
only consistent with the above self-similar solution when the strain is axisymmetric
and of the form a11 = a22 (implying a33 = −2a11 = −2a22). For this case, the self-
similar solution suggests the possibility of a statistically stationary turbulence. As
noted above, in this case the viscous terms in the mean momentum and Reynolds
stress equations can be retained in the self-similar analysis.
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2.2.2. Other equilibrium similarity states

In this section more general ‘equilibrium similarity solutions’ for strained plane
wakes are derived. These solutions result from the removal of some constraints
imposed in the classical self-similar analysis of § 2.2.1 and have greater generality
than the classical solution, as they possess several free parameters. The solutions are
derived by combining terms in the governing equations and/or eliminating terms that
are zero from the analysis. Elements of the analysis presented below are thus similar
to those in the work of George & Castillo (1997) and Castillo & George (2001) on
turbulent boundary layers with and without streamwise pressure gradients.

There are some limitations on the range of applicability of the solution (2.45). These
are best identified by regrouping terms in equations (2.33) and (2.37). Combining terms
in the mean momentum equation yields[

1

δ

dδ

dt
− a22

]
η

df

dη
−
[

1

Us

dUs

dt
+ a11

]
f(η) +

[
K12

Usδ

]
dk12

dη
= −ν

[
1

δ2

]
d2f

dη2
. (2.46)

Differentiating equation (2.32) with respect to time leads to

1

δ

dδ

dt
+

1

Us

dUs

dt
= a22 − a11, (2.47)

which can be used to further reduce equation (2.46) to[
1

δ

dδ

dt
− a22

](
η

df

dη
+ f(η)

)
+

[
K12

Usδ

]
dk12

dη
= −ν

[
1

δ2

]
d2f

dη2
. (2.48)

This result can be integrated in η and combined with the known boundary conditions
to produce [

1

δ

dδ

dt
− a22

]
ηf(η) +

[
K12

Usδ

]
k12 = −ν

[
1

δ2

]
df

dη
. (2.49)

Terms in the Reynolds stress transport equation (2.37) can also be grouped together,[
a22 − 1

δ

dδ

dt

]
η

dkαβ
dη

+

[
(aαα + aββ) +

1

Kαβ

dKαβ

dt

]
kαβ

= P̃w
αβ −

[
Trαβ

Kαβδ

]
dtrαβ
dη

+

[
Παβ

Kαβ

]
παβ(η)−

[
Dαβ

Kαβ

]
dαβ(η) + ν

[
1

δ2

]
d2kαβ

dη2
, (2.50)

where P̃w
αβ is the wake shear production given by

P̃w
11 = 2

[
K12Us

K11δ

]
k12(η)

df

dη
, (2.51a)

P̃w
22 = 0, (2.51b)

P̃w
33 = 0, (2.51c)

P̃w
12 =

[
K22Us

K12δ

]
k22(η)

df

dη
. (2.51d)

Substituting the self-similar solution (2.45) into equation (2.49) yields

−
[
a11 + a22

2

]
ηf(η) +

[
K0

12

U0
s δ

0

]
k12 = −ν

[
1

(δ0)2e(a22−a11)t

]
df

dη
, (2.52)

where K0
ij = Kij(t = 0) is the value of Kij at the virtual origin of the self-similar period
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required to match the observed evolution. From this equation, it is apparent that the
self-similar solution (2.45) cannot be valid for all strain geometries. Unless a22 > a11

the viscous term will grow exponentially, ultimately making a balance with the other
(constant) terms impossible.† Also, if a11 + a22 = 0, the first bracketed term is zero
and the two remaining terms cannot balance (a11 = a22 is not possible for non-zero
applied strain when a11 +a22 = 0). Substituting the solution (2.45) into equation (2.50)
and requiring that the viscous diffusion terms be balanced by the left-hand-side terms
and P̃w

αβ also requires that a22 > a11. Thus alternative similarity solutions must be
sought for cases in which a22 < a11 or a11 + a22 = 0.

Other possible similarity solutions may exist in which some of the terms that
constrained the above self-similar analysis are zero, or in which certain combinations
of the terms combine to be zero. The analysis leading to the ‘classical’ solution (2.45)
is invalid when the first term of equations (2.49) and (2.50) is zero, which occurs when
δ(t) = δ0 exp(a22t) or Cδ = a22.‡ With this spreading rate, equation (2.32) leads to
Us(t) = U0

s exp(−a11t). In this case the viscous term in the mean momentum equation
(2.49) cannot be negligible, as it is the only term remaining to balance the Reynolds
shear stress. Requiring that the two non-zero bracketed terms be proportional yields

K12(t) = K0
12e
−(a11+a22)t and k12(η) =

−νU0
s

δ0K0
12

df

dη
, (2.53)

which is different from the results in equations (2.36) and (2.52). Ensuring that the

left-hand side of the u′1
2 transport equation scales like P̃w

11 then determines the form

of K11. The pressure–strain condition (2.42) and the transport equations for u′2
2 and

u′3
2 fix the forms of K22 and K33. The solution is

δ(t)

δ0
= ea22t,

Us(t)

U0
s

= e−a11t,
K12(t)

K0
12

= e−(a11+a22)t, (2.54a)

K11(t)

K0
11

= e−2a11t(1 + D1(1− e−2a22t)) if a22 6= 0, (2.54b)

= e−2a11t(1 + D1at) if a22 = 0, (2.54c)

K22(t)

K0
22

= e−2a22t(1 + D2(1− e−2a11t)) if a11 6= 0, (2.54d)

= e−2a22t(1 + D2at) if a11 = 0, (2.54e)

K33(t)

K0
33

= e−2a33t(1 + D3(1− e4a33t)) if a33 6= 0, (2.54f)

= 1 + D3at if a33 = 0, (2.54g)

where D1, D2, and D3 are parameters that arise from the removal of the constraints
previously imposed to ensure that the first term in equations (2.49) and (2.50) scales
like the others; this term is now zero and no longer imposes such constraints. The
magnitude of the strain rate in the two strained directions, a, is used to make D1,
D2 and D3 dimensionless in the special plane strain cases where a22 = 0, a11 = 0,
and a33 = 0 (equations 2.54c, e, f ). Note that for this similarity solution the bracketed

† Note that Reynolds (1962) recognized this and speculated that for the strain geometry he
considered the flow might eventually relaminarize.
‡ Examination of the simulations indicates that this does indeed occur for developed strained

wakes when a22 > 0, e.g. cases B, C, FC, SC and H described later.
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terms in equations (2.33) and (2.37) are not all proportional; instead combinations of
the left-hand-side terms cancel each other out.

The equilibrium similarity solution (2.54) does not satisfy equation (2.43) and
the individual normal Reynolds stress components grow or decay at different rates,
unlike for the classical solution (2.45). This is possible because the non-zero bracketed
coefficients in equation (2.50) are no longer constant and the pressure–strain term Παβ

is thus not required to be proportional to Kαβ . Also, because the first term in equation
(2.50) is zero, the bracketed terms in the transport equation for any one component
of the Reynolds stress tensor are not, in general, proportional to the bracketed terms
in the equations for the other components. Therefore, the ratios Παβ/Kαβ are not
necessarily proportional to each other and the pressure–strain condition (2.42) no
longer implies that equation (2.43) must be valid.

Given the above family of solutions, there are now many possible similarity so-
lutions to choose from for the normal Reynolds stresses. For these solutions to be
sustained, they must be maintained at large times. This places certain restrictions on
the values of D1, D2 and D3 that can be used while still maintaining positive normal
Reynolds stresses. In particular, if a22 > 0 then D1 > −1, if a22 = 0 then D1 > 0, and
if a22 < 0 then D1 6 0. Similarly, if a11 is positive, zero, or negative, then D2 is > −1,
> 0, or 6 0, respectively, and if a33 is positive, zero, or negative, then D3 is 6 0, > 0,
or > −1, respectively.

The classical self-similar solution (2.45) predicts that all the Reynolds stress com-
ponents change at the same rate and therefore that the Reynolds stress anisotropy

and the shear stress correlation coefficient u′1u′2/(
√
u′1

2

√
u′2

2) are constant in time. For
the equilibrium similarity solution (2.54), the various Reynolds stress components will
evolve differently from each other. This implies that the anisotropy is not constant
and the shear stress correlation coefficient is only constant if D1 = D2 = 0. In fact,
to satisfy the Schwarz inequality for arbitrary initial correlation coefficients, it is
necessary to impose stricter limitations on the values of D1, D2, and D3 than those
outlined in the previous paragraph, namely the conditions Di > −1 must be replaced
by Di > 0 to ensure that the correlation coefficient remains less than or equal to 1
when it is initially 1.

In high-Reynolds-number flows away from walls, such as the strained wakes
considered here, the viscous diffusion terms are negligible. They are thus often
neglected in the similarity analysis of such flows. If, on the other hand, one insists
that these terms must remain small, or at least not grow more rapidly than the other
terms in the balance, then certain restrictions are imposed on the strain geometries
for which the similarity solution (2.54) can be sustained. For all strain geometries, the
viscous diffusion of u′1u′2 does not grow faster in time than the shear production of

u′1u′2 and thus no restrictions are imposed by this balance (note that for this similarity

solution all of the terms on the left-hand side of equation (2.50) for u′1u′2 are zero).

On the other hand, balancing the viscous diffusion of u′1
2 requires that a22 > 0 and

if a22 = 0 then D1 must be zero, again resulting in all the terms of the left-hand

side of equation (2.50) being zero. Balancing the viscous diffusion of u′2
2 requires that

a22 > a11 when a11 > 0 and a22 > 0 when a11 6 0. Balancing the viscous diffusion

of u′3
2 is the most limiting requirement of all, only being possible when a22 6 −2a11

and a22 > 0. Only two of the eight strain geometries simulated fall within this range
(those of cases C and E).

More terms can be eliminated from the similarity analysis if the second term
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of the Reynolds stress transport equation (2.50) is also zero, which happens when
C11 = −2a11, C22 = −2a22, C33 = −2a33, and C12 = −(a11 + a22), corresponding to
D1 = D2 = D3 = 0 in the solution (2.54). (Note that the C12 result agrees with that
derived from the mean momentum equation previously). In this case, the entire left-
hand side of equation (2.50) is zero and the left-hand-side terms should not have an
impact on the self-similar analysis. Unlike with the mean momentum equation, it is
not necessary to maintain the viscous terms in equation (2.50) to preserve a balance,
which can be provided by the turbulent transport, pressure–strain, and dissipation
terms. Thus it is possible for the viscous diffusion terms to be negligible for this
similarity solution. On the other hand, it is also possible to retain these terms in the

analysis because when D1 = D2 = 0 the viscous diffusion terms in the u′1
2 and u′1u′2

equations scale like P̃w
11 and P̃w

12, respectively. If, as expected, the viscous diffusion
terms are negligible, then each of the equations for the four non-zero Reynolds stress
components in this case is simply a balance between production by the wake shear,
turbulent transport, pressure–strain, and dissipation.

Even if the first term of equation (2.49) is not zero, a second equilibrium similarity
solution is possible when the first two bracketed terms in this equation and (2.50) are
proportional without both being constant, thus no longer requiring the exponential
solutions of equations (2.34) and (2.39). In particular, the three-parameter family (E1,
E2 and E3) of solutions given by

δ(t)

δ0
= h(t)E2ea22t,

Us(t)

U0
s

=
e−a11t

h(t)E2
,

K12(t)

K0
12

=
e−(a11+a22)t

h(t)
, (2.55a)

K11(t)

K0
11

=
e−2a11t

h(t)2E2
,

K22(t)

K0
22

=
e−2a22t

h(t)2(1−E2)
,

K33(t)

K0
33

=
e−2a33t

h(t)E3
, (2.55b)

h(t) = 1 + E1(1− e−2a22t) if a22 6= 0 (2.55c)

= 1 + E1at if a22 = 0 (2.55d)

satisfies all constraints except the pressure–strain condition (2.43). As for the previous
similarity solution (2.54), the bracketed terms in equations (2.33) and (2.37) are not all
proportional; instead it is combinations of the left-hand-side terms (two groups of two
each in the mean momentum and Reynolds stress equations) that are proportional to
the other terms in the equations, as indicated in (2.49) and (2.50). With the solution
(2.55), the bracketed terms on the left-hand sides of equations (2.49) and (2.50) and
P̃w
αβ are all proportional to exp(−2a22t)/h(t). If E2 = 1

2
the viscous terms also have

the same time dependence. After dividing by the common factor exp(−2a22t)/h(t),
equation (2.49) reduces to

[2E1E2a22]ηf(η) +

[
K0

12

U0
s δ

0

]
k12 = −ν

[
h(t)1−2E2

(δ0)2

]
df

dη
, (2.56)

where the first bracketed term is replaced by E1E2a if a22 = 0. This relationship
between k12(η) and the mean profile shape f(η) can be contrasted with the corre-
sponding expressions (2.52) and (2.53) derived from the classical similarity analysis
and the similarity analysis leading to the equilibrium similarity solution (2.54), re-
spectively.

As with the previous equilibrium similarity solution, the Reynolds stress compo-
nents in equation (2.55) change at different rates. Even though the anisotropy is
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thus not constant, the shear stress correlation coefficient u′1u′2/(
√
u′1

2

√
u′2

2) is indeed
constant, unlike with equation (2.54). Ensuring that the correlation coefficient remains
less than or equal to 1 thus does not constrain the possible choices of E1, E2, and E3.

Because the first bracketed term of equation (2.50) is the same for all α and β
and is not equal to zero (as was the case for solution (2.54)), the terms Παβ/Kαβ

should be proportional to each other to ensure a balance with the other terms in the
equation. This, combined with the pressure–strain condition (2.42), then implies that
the normal Reynolds stresses K11, K22, and K33 should be proportional, as derived
for the classical case (equation (2.43)). The only values of E1, E2, and E3 that satisfy
condition (2.43) are

E1 = −1, E2 =
(a11 + a22)

4a22

, E3 =
−(3a11 + a22)

2a22

if a22 6= 0, (2.57)

(no solution when a22 = 0 because then h(t) is not of exponential form), which
reduces the solution (2.55) to that given in equation (2.45). However, the pressure–
strain condition (2.43) is also satisfied in the limit of large times for all E1 when a22

is negative if E2 and E3 have the values given in equation (2.57). In this case the
Reynolds stresses approach those of the classical solution (2.45) for large times.

Other self-similar solutions of the form (2.55) arising from different values of E1,
E2 and E3 may indeed be possible, however, as it is possible that the pressure–strain
condition (2.43) may not always be satisfied. In particular, a secondary balance may
be set up between the pressure strain, dissipation, and transport terms, whereby
only their combination scales like the other terms in the Reynolds stress transport
equation, allowing the pressure–strain terms Παβ/Kαβ to scale differently from each
other, while still permitting equation (2.42) to be satisfied. If this is indeed the case,
then the additional generality of equation (2.55) may help to describe the observed
evolution of the flow.

If this kind of secondary balance between the pressure–strain, the turbulent trans-
port and the dissipation does indeed occur, then the previous equilibrium similarity
solution (2.54) can be generalized even further. In particular, the similarity analysis
for that case then imposes no constraints on the forms of the functions K22 and K33

because there is no wake shear production for these Reynolds stresses. Without the
limitations on the forms of K22 and K33, it is possible to balance the viscous diffusion
terms whenever a22 > 0, implying that this would be possible for the strain geometries
of cases B, F, and H, in addition to those of cases C and E.

For some values of E1, the solution (2.55) reduces to those already derived above. If
E1 = 0 then h(t) = 1 and the solution reduces to the previous similarity solution (2.54)
with D1 = D2 = D3 = 0. If E1 = −1 and a22 6= 0 (when a22 = 0, the coefficient E1

must be non-negative to prevent h(t) from becoming negative and K12 from changing
sign at large times) then h(t) = exp(−2a22t), yielding

Cδ = a22(1− 2E2), CM = 2a22E2 − a11, C12 = a22 − a11, (2.58a)

C11 = −2a11 + 4a22E2, C22 = 2a22 − 4a22E2, C33 = −2a33 + 2a22E3. (2.58b)

This is a purely exponential solution of the form given in equations (2.34) and (2.39)
and thus reduces to the classical solution (2.45) when E2 and E3 are given by the
values in equation (2.57).

For other values of E1, E2 and E3, the long-time behaviour (the period of interest
for sustained self-similar evolution) of the solution (2.55) is different depending on
whether a22 is positive, zero or negative. For positive a22, h(t) approaches a constant
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value of 1 + E1 and E1 must be greater than or equal to −1 to ensure that h(t)
does not change sign. When a22 > 0, the solution (2.55) approaches that given by the
previous similarity solution (2.54) for large times† (unless E1 = −1). Also, the viscous
terms scale like the other terms in the governing equations for any value of E2 (except
when E1 = −1, in which case they only scale if E2 = 1

2
).

When a22 equals zero, h(t) approaches E1at (E1 > 0 for positive h(t)) and the
width, deficit and Reynolds stresses approach the non-exponential behaviour given
by equation (2.55) with h(t) replaced by at, a22 replaced by zero, and the equalities
replaced by proportionalities. Balancing the viscous terms requires that E2 >

1
2

or
E1 = 0.

When a22 is negative, h(t) approaches −E1 exp(−2a22t) (E1 < 0 for positive h(t)) and
for large times the solution (2.54) approaches pure exponentials with exponents given
by equation (2.58), as when E1 = −1. It seems unlikely that a wake being compressed
in the cross-stream direction could increase in width, implying that E2 6

1
2

when

a22 < 0. However, examination of equations (2.49) and (2.50) indicates that E2 >
1
2

for the viscous terms to be balanced by other terms in these equations when a22 6 0.
Thus when a22 < 0 it is likely that for physical solutions E2 = 1

2
; indeed the numerical

results indicate that this is correct. For this value of E2, the viscous terms scale like
the other terms in the governing equations (they approach a constant). Note that the
long-time solution mentioned above with E2 and E3 given by the values in equation
(2.57) only satisfies E2 = 1

2
when a11 = a22 and thus may be unphysical for other

strain geometries. When E2 = 1
2
, the Reynolds stresses K12, K11 and K22 are given by

K0
αβ exp((−aαα− aββ)t)/h(t). The choice E3 = 1 results in the same expression for K33.
Note that when E2 = 0, the similarity solution (2.55) may also have some internal

consistency limitations, because in this case the first term of equation (2.56) is zero.
If E2 = 0, the viscous term must be constant, which is not possible for a22 < 0, only
possible when a22 = 0 if E1 = 0, and only true for large times if a22 > 0. Even though
the first term of equation (2.56) is also zero when E1 = 0, a balance between the
remaining two terms in this case is always possible because then h(t) = 1.

Table 1 summarizes the predicted self-similar behaviour of the wake half-width for
all the strain geometries simulated. Also shown are schematics of the strain geometry
for each case, with arrows indicating the directions of compression and expansion.
Columns are included for the classical self-similar solution (2.45), the similarity
solution (2.54), the similarity solution (2.55), including an additional column with
the solution (2.55) evaluated for E2 = 1

2
, and, for later comparison, the observed

behaviour in the numerical simulations. The first two similarity solutions are not
applicable to all the strain geometries; in such instances the entries are marked with
an asterisk. The equilibrium similarity solution given by equation (2.55) is sustainable
for all strain geometries and for E2 = 1

2
the viscous terms scale with the rest of the

terms in the equations for all values of viscosity.
It should be emphasized that the existence of the above similarity solutions does

not imply that actual strained wakes will exhibit such self-similar behaviour. Simple
free shear flows, such as wakes and mixing layers, do indeed evolve self-similarly

† Strictly speaking, for the similarity predictions of the normal Reynolds stresses u′2
2 and u′3

2

to be the same for large times it is required that either a11 > 0 or D2 = D3 = 0. However, as
noted above, if the pressure–strain terms only scale when combined with the turbulent transport

and dissipation terms, then no restrictions need to be imposed on the behaviour of u′2
2 and u′3

2

to maintain self-similarity and the solution (2.54) can be further generalized, permitting agreement
with solution (2.55) even when a11 6 0 and D2 and D3 are not zero.
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Case a11/a a22/a a33/a (2.45) (2.54) (2.55) (2.55), E2 = 1/2 DNS

A 0 −1 +1 −1/2∗ −1∗ 2E2 − 1 0 0
B 0 +1 −1 +1/2 +1 +1 +1 +1

C/SC/FC −1 +1 0 +1∗ +1 +1 +1 +1
D +1 −1 0 −1∗ −1∗ 2E2 − 1 0 0
E −1 0 +1 +1/2 0 (at)E2 (at)1/2 (at)1/2

F +1 0 −1 −1/2∗ 0 (at)E2 (at)1/2 (at)1/2

G −1/2 −1/2 +1 0 −1/2∗ E2 − 1/2 0 0
H +1/2 +1/2 −1 0 +1/2 +1/2 +1/2 +1/2

A B C D E F G H

Table 1. Exponents n for exponential growth enat of δ/δ0 predicted by similarity analysis and
observed in the simulations. The predictions of equation (2.55) are for the asymptotic exponential
behaviour at large times, and have have been evaluated in a second column for E2 = 1

2
, the value

suggested by physical arguments when a22 < 0. In cases E and F, the long-time predictions of
equation (2.55) and the observed behaviour in the simulations are not exponential, but grow like
(at)1/2. Asterisks indicate predictions in which the similarity analysis is either internally inconsistent
(cases C/SC/FC) or in which the viscous terms cannot be balanced at large times for any choice of
the available parameters. Arrows indicate directions of compression and expansion for each case.

once developed, but the flows considered here are notably more complex, with two
competing mechanisms of turbulent kinetic energy production. Additionally, even in
simple free shear flows, self-similarity may require significant flow development to be
achieved. As will be seen, certain orientations of mean strain can rapidly reduce the
wake velocity deficit. In such flows the remnants of the original wake are negligible
and a pure straining flow results prior to any self-similar equilibrium. Alternatively,
other orientations of mean strain may result in an increasing wake deficit, which
ultimately dominates the strain. The likelihood of achieving the self-similar strained
wake state predicted by the classical solution (2.45), in which the wake shear and
mean strain remain in balance, may thus be small.

Self-similar solutions are also possible for certain time-varying strain rates, as
derived in Appendix A. The classical similarity solutions (2.45) and (A 5), derived here
and in Appendix A, can also be obtained by a general Lie group analysis (Oberlack
2000) and their spatially developing analogues have been derived differently by
Reynolds (1962) (note that his m is equal to our −2m/(m− 1)), Gartshore (1967) and
Narasimha & Prabhu (1972). However, these analyses do not predict the alternative
equilibrium similarity solutions that are more relevant to the observed evolution of
strained wakes.

3. Generating the simulations
3.1. The numerical method

The Galerkin spectral numerical method described in Spalart, Moser & Rogers (1991)
was used by Moser et al. (1998) to generate simulations of unstrained temporally
evolving plane wakes. Because these flows are temporally evolving, both the stream-
wise and spanwise directions are homogeneous and the spatial variations of the
simulated variables in these directions can be represented by Fourier expansions.
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The basis functions in the infinite inhomogeneous cross-stream direction are mapped
Jacobi polynomials and a few ‘extra’ functions (two per kx, kz wavenumber pair)
that exactly represent the far-field behaviour of quantities exhibiting slowly decaying
potential tails (such as the velocity). These extra functions are precomputed once for
each computational mesh used.

With the addition of uniform global strain, the simulation of the turbulence (equa-
tions (2.13) and (2.14) or analogous vorticity fluctuation equations) is complicated by
the fluctuating velocity derivative term with a coefficient that has explicit dependence
on the spatial coordinates xi. In the laboratory reference frame, the problem is no
longer periodic and homogeneous. However, if the problem is transformed to a com-
putational coordinate system that moves with the mean strain, the streamwise and
spanwise directions again become periodic and homogeneous. This transformation
was developed by Rogallo (1977, 1981) for simulating strained homogeneous turbu-
lence, but has also been used by Coleman, Kim & Spalart (2000) to simulate strained
channel flow for a study of three-dimensional boundary layers. In order to simulate
strained free shear flows it would thus be desirable to combine this transformation
with the numerical method of Spalart et al. (1991). Unfortunately, this would require
recomputing the ‘extra’ basis functions at every time step, which would be pro-
hibitively time consuming for the computation. Thus, for the purposes of simulating
strained wakes, the method of Corral & Jimenez (1995) was used to represent spatial
variation in the cross-stream inhomogeneous direction, rather than the method of
Spalart et al. (1991). Instead of mapping an infinite cross-stream domain onto a finite
interval, Corral & Jimenez (1995) simulate the vorticity field in a truncated domain,
with the domain boundaries being outside the vortical region of the flow. Periodicity is
assumed in the cross-stream direction for the purposes of time advancing the vorticity
field, but the effect of the undesired periodic image flows is removed by using an
appropriately corrected velocity field when computing the nonlinear terms.

The numerical method used to generate all the simulations described in this paper
combines the transformation developed by Rogallo (1977, 1981) with the method of
Corral & Jimenez (1995) to simulate strained inhomogeneous free shear flows. The
mathematical details of this method are outlined in Appendix B. It is a non-trivial
task to recover the ‘standard’ Reynolds stress balance terms in equation (2.15) from
the vorticity formulation used in the computations. Because of this, many useful
formulas in the ‘moving’ coordinate system that aid in computing these quantities
are included in Appendix B. By substituting Bij = δij and aij = 0, the corresponding
‘unstrained’ equations can be recovered.

In the computational ‘moving’ coordinates, the self-similar analysis presented in
§ 2.2 is modified. In general, each term acquires the appropriate Bij associated with
differentiation and there is a one-to-one correspondence between terms in the trans-
formed equations and the equations presented in § 2.2. However, the terms with the
a22x2 coefficients in equations (2.9a) and (2.16) and the corresponding terms with
a22η coefficients in (2.27) and (2.29) are absorbed into the time-derivative terms in the
transformed set of equations. Since the balance terms are computed in the computa-
tional variables they are presented with these two terms combined (see Appendix D).
Of course the actual similarity solutions derived in § 2.2 remain unchanged.

3.2. The initial conditions

Free shear flows are known to be sensitive to their initial conditions, and the task
of choosing appropriate initial conditions for the simulations thus requires care. In
many practical situations, such as the flow over a multicomponent airfoil, the ‘strain’
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or pressure gradient associated with downstream components may influence the flow
well before the wake of an upstream component is fully developed. Also, it is unlikely
that the effective strain (or pressure gradient) will vary with downstream distance as
is necessary for the self-similar solutions presented in § 2.2 or Appendix A to apply.
The simulations presented here are not designed to replicate any particular reported
experimental situation, but more generally to clarify the effects of such global straining
and to provide a database that will aid in turbulence model development for turbulent
flows in which turbulence is produced both by strain and shear. In keeping with this
simplified picture, here a uniform and constant strain rate is applied suddenly at a
point where the wake is evolving self-similarly and the effects associated with the
near-wall region of the wake-generating body are no longer significant (e.g. the mean
velocity profile is no longer cusp-like, viscous diffusion terms are negligible, etc.). This
is similar to the situation that Reynolds (1962) and Keffer (1965, 1967) tried to create
in their experiments.

The initial conditions used here are instantaneous fields from the developed un-
strained wake simulations of Moser et al. (1998). In order to have the largest sample
of large-scale eddies present in the computational domain when the strain is applied,
the first field that is deemed to be in the ‘self-similar’ period is used (at later times the
wake has spread and there are fewer large-scale eddies in the computational domain,
resulting in a poorer statistical sample). In Moser et al. (1998) three wakes were
simulated, including an ‘unforced’ wake and two ‘forced’ wakes. These simulations
were begun from two realizations of a turbulent boundary layer simulation generated
by Spalart (1988), but in the ‘forced’ cases additional energy was added (at time t = 0
only) to the two-dimensional modes of the computation. In the ‘strongly forced’ case,
so much energy was added that the wake spreading rate is very high compared with
experimental values and the wake only becomes approximately self-similar for a brief
period before the evolution is limited by the computational domain size. This would
thus be a poor case to use as an initial condition for the strained cases considered here.
The ‘weakly forced’ and ‘unforced’ cases, which have longer periods of self-similar
evolution and spreading rates that are in line with what is observed experimentally,
are probably both acceptable as initial conditions. The addition of energy to the
two-dimensional modes of the ‘weakly forced’ case results in initial wake turbulence
that is not a solution of the Navier–Stokes equations. Much of this energy must be
dissipated and diffused before an equilibrium between these terms and the turbulence
production can be achieved. Presumably this has largely occurred by the time the
wake becomes self-similar, but it is possible that transients associated with changes
in initial conditions could be very long-lived. The faster spreading rate of the ‘weakly
forced’ wake also results in a thicker wake during its self-similar period, and therefore
a poorer statistical sample of large eddies in the given domain size. For these reasons,
the ‘unforced’ case is used here to provide the initial conditions for the strained flows.
As noted above, the initial field selected is at the start of the self-similar period, at
t1U

2
d/|Aw| = 42.8 in this case (where Ud is the initial wake mean velocity deficit at

t = 0, well prior to the straining, and Aw is constant for the unstrained wake). For this
initial field, the wake mean velocity deficit is Um = 0.265Ud and the wake half-width
is b = 3.59|Aw|/Ud. Note that, as described in Moser et al. (1998), this unforced case
has less organized large-scale structure than the forced wakes.

3.3. Summary of flows simulated

All of the simulated wake flows described in this paper evolve in the presence of
a constant and uniform mean strain rate. Self-similar evolution of such flows is
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Case a11/a a22/a a33/a Nf
x Nf

y Nf
z ab0/U0

m a∆t ea∆t CPU

A 0 −1 +1 320 200 448 0.271 2.10 8.2 222
B 0 +1 −1 280 560 16 0.271 2.30 10.0 62
C −1 +1 0 32 700 64 0.271 1.90 6.7 107

SC −1 +1 0 20 680 48 0.068 1.90 6.7 118
FC −1 +1 0 96 768 112 1.084 1.82 6.1 60
D +1 −1 0 1536 128 64 0.271 2.30 10.0 72
E −1 0 +1 64 340 384 0.271 1.55 4.7 176
F +1 0 −1 1536 300 12 0.271 2.30 10.0 74

G −1/2 −1/2 +1 160 324 384 0.271 2.00 7.4 240
H +1/2 +1/2 −1 768 300 16 0.271 2.30 10.0 53

Table 2. Strain geometry, number of modes at final remesh (initial values are Ni
x = 512, Ni

y = 240,

and Ni
z = 128), strain rate, total strain (∆t = tf − t1, final time minus time at initiation of strain),

and Cray C90 CPU hour requirement for each simulation.

mathematically possible, as has been described in § 2.2. For the self-similar analysis, it
was not necessary to precisely define the scales Us and δ. At this point we will choose
the peak magnitude of the velocity deficit Um and the wake half-width b for these
two scales, consistent with previous investigators. The half-width is here defined as
the distance between the y-locations at which the mean velocity deficit is half of Um

(note that some investigators take the half-width to be half this distance). Because of
the incompressibility condition (2.6), only two of the three constant strain rates a11,
a22, and a33 can be chosen arbitrarily. Here both plane (one of the three aij being
zero) and axisymmetric (two of the three aij being equal) irrotational mean strains
are considered.

In the case of plane strain, one direction is stretched, another is compressed, and
the third is unstrained. There are six possible plane strain geometries in which the
strain is aligned with the coordinate directions. All six cases have been simulated at a
strain rate of ab0/U0

m = 0.271, where a corresponds to the magnitude of the strain rate
in each of the two strained coordinate directions, and b0 and U0

m are the wake width
and velocity deficit, respectively, at the time t1 at which the strain is initially applied.
These six cases are listed in table 2, along with some details of the computation for
each case.

The value of the strain rate for the plane strain simulations was chosen to be of the
same order as the initial (t = t1) inverse turbulence time scale ε/q2, with the initial
value of the dimensionless ratio aq2/ε being 1.06 at the centreline. In the experiments
of Reynolds (1962) and Keffer (1967) (on the spatially evolving flows analogous to
cases A and B of table 2, respectively) no measurements of the Reynolds stresses
or dissipation rate are given to compute the time scale q2/ε. The experiments of
Keffer (1965) include some Reynolds stress measurements and a ‘strained isotropic
turbulence’ estimate of ε at one location in one of his strained wakes, but no estimates
of ε at the duct inlet are given. It is thus difficult to compare the computational initial
value of aq2/ε to those of the experiments.

The above experiments do, however, provide information on both b and Um at the
distorting duct inlet. Thus the strain rate used in the experiments can be compared to
the wake shear, and these values can be compared with the same dimensionless ratio in
the computations. Reynolds (1962) reported values of b and Um for a 1/2 in. cylinder
placed with its axis 20.75 inches upstream of the distorting duct that yield ab0/U0

m =
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0.46. This value is 70% larger than that in the simulations. Using an empirical
correlation relating wake velocity deficit to downstream distance for unstrained wakes,
he expected only slightly smaller values for the smaller diameter cylinders. For a
3/16 in. cylinder placed 10 in. upstream of the same distorting duct, Keffer (1965)
measured ab0/U0

m = 0.17, a value 36% less than that used in the simulations,
suggesting perhaps a greater sensitivity to cylinder diameter than anticipated by
Reynolds (1962). With the distorting duct rotated to change the strain geometry to
that of case B, Keffer (1967) reported values that give ab0/U0

m = 0.41 for a 1/2 in.
cylinder placed 20 in. upstream of the distorting duct inlet. The simulation value of
ab0/U0

m = 0.271 thus falls within the range of experimental values.
The spatially evolving flows analogous to cases C and D of table 2 are wakes

evolving in the presence of streamwise pressure gradients. Because of the interest
in studying wakes in adverse pressure gradients for multi-element airfoil design,
additional strain rates have been simulated for the strain geometry of case C. These
flows are also listed in table 2 (case FC with a strain rate four times larger than case
C and case SC with a strain rate four times smaller than case C).

Experimental data for the strain geometries of cases E and F apparently do not
exist for wake flows. Tucker & Reynolds (1968) did use a ‘longitudinally distorting
tunnel’ with the strain geometry of case F in their study of strained homogeneous
turbulence, but for initially isotropic turbulence the orientation of the straining
is irrelevant and these results were used simply to confirm features seen in their
‘laterally distorting tunnel’ (in which the strain was oriented as in case A). Perhaps
more relevant, Sreenivasan (1985) applied ‘longitudinal’ strain (as case F) to developed
homogeneous turbulent shear flow in which the shear was oriented as for the wakes
considered here.

There are also six possible orientations of coordinate-aligned axisymmetric strain.
For these axisymmetric cases, one direction is stretched or compressed at a given
strain rate and the other two directions are compressed or stretched, respectively, at
half that rate. Only the two cases with a11 = a22 (and magnitude a/2) have been
simulated here. The classical self-similar analysis presented in § 2.2.1 indicates the
possibility of a self-similar statistically stationary flow for these cases. The strain
rate for these cases has been chosen such that a33b

0/U0
m = ±0.271, the same as the

magnitude of a in the plane strain cases.
For all the simulations in this paper, the initial number of modes in each coordinate

direction is Ni
x = 512, Ni

y = 240, and Ni
z = 128. This is because the required grid size

is determined by the initial conditions, which are the same for all the cases. As each
flow evolves, it becomes necessary to ‘remesh’ the simulation to maintain adequate
resolution in some coordinate directions. In particular, directions that are stretched
eventually require additional modes to adequately resolve the flow variation in those
directions. Conversely, compressed directions may become adequately resolved with
fewer modes, although this is not always the case when compression is in the cross-
stream y-direction. In such cases the flow eventually resists the mean compression
and the wake width becomes roughly constant (cases A, D, and G). Additionally,
stretching in the spanwise z-direction intensifies the spanwise vorticity and this may
require additional y-modes to resolve. Each simulation is remeshed several times to
minimize the CPU time required for an accurate simulation (the number of different
‘grids’ used for each calculation varied from 7 in case F to 14 in case A). The number
of modes used to resolve each coordinate direction after the final remesh is given
in table 2. To fully dealias the results, the ‘physical space’ grids used to compute
nonlinear products contain 3/2 as many grid points as the number of Fourier modes
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listed for each of the coordinate directions. As seen in table 2, the number of Cray
C90 CPU hours required for the different strain geometries is variable.

Most of the simulations had to be terminated when the domain size became too
small to support an adequate (for statistical purposes) sample of eddies. This sample
of eddies is not large to begin with, and compressing the domain soon reduces it
to the point where the simulation is no longer a good model of the infinite-domain
problem. As noted in table 2, some simulations were run until a total strain of
exp(a∆t) = 10.0, where ∆t denotes the amount of time the strain is applied. For
cases A and D, in which the cross-stream y-direction is the only direction being
compressed, this is justified because the extent of the (x, z) computational domain
increases in time as a result of the mean strain. Cases B, F and H were run to
this point simply because the CPU requirements for the late-time results were small,
owing to the limited spanwise domain size. The relevance of the late-time results in
these cases is questionable, however. The computational effort required to run case
E to similar total strains would have been significant and this run was terminated
at a lower total strain of 4.7. Case C is particularly constrained by the domain size
because the wake width is increasing rapidly in a shrinking streamwise domain; the
wake width is several times the streamwise extent of the computational domain by
the end of the simulation, limiting the aspect ratio of any large eddies that might be
trying to develop. In case G, the streamwise domain extent is reduced at only half the
rate of case C (a11b

0/U0
m = −0.136) and the width of the wake is roughly constant,

allowing more meaningful results at later times.

4. Results from the simulations
Turbulence statistics and flow visualizations from the simulated flow fields are

examined in this section. Of particular interest is whether the flow evolutions are
consistent with any of the similarity solutions presented in § 2.2. If this is not the case,
then the terms in the Reynolds stress balance can be examined to address in what
ways the evolutions are departing from the predicted similarity.

4.1. Plane strain cases

4.1.1. The wake mean velocity

Although the area under the wake mean velocity profile Aw must grow exponentially
(equation (2.12)), the Reynolds number Rem = bUm/ν grows exponentially only if the
mean wake profiles are self-similar (equation (2.32)). The time evolution of Rem for the
six plane strain cases with ab0/U0

m = 0.271 is shown in figure 1, plotted in log-linear
coordinates to facilitate determination of exponential behaviour. The time coordinate
has been non-dimensionalized as τ = tU0

m/b
0. Also plotted is the evolution of the

Reynolds number of the unstrained wake, denoted by ‘a = 0’. The strain is applied at
τ1 = 3.16 and at this time the evolutions for the various cases diverge. The Reynolds
number evolutions are close to exponential from the instant the strain is applied
onward, indicating that the mean velocity profiles for all these cases must indeed be
similar when scaled by b and Um. This is confirmed later by direct examination of the
profiles. Defining the dimensionless exponential growth rates

nRe =
1

Rem

dRem
d(at)

, nb =
1

b

db

d(at)
, nU =

1

Um

dUm

d(at)
, (4.1)

it can easily be verified that the value of nRe for each simulation is the same as that
predicted by the self-similar analysis, namely (a22 − a11)/a (see table 3).
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Figure 1. Evolution of the Reynolds number Rem = bUm/ν for the plane strain cases: ——, cases A
(lower) and B (upper); – – – –, cases C (upper) and D (lower); · · · · · ·, cases E (upper) and F (lower);
and — ·—, unstrained wake.

Case a11/a a22/a a33/a (a22 − a11)/a nRe nb nU nU − nb
A 0 −1 +1 −1 −1 0 −1 −1
B 0 +1 −1 1 1 1 0 −1

C/SC/FC −1 +1 0 2 2 1 1 0
D +1 −1 0 −2 −2 0 −2 −2
E −1 0 +1 1 1 1/4∗ 3/4∗ 1/2∗
F +1 0 −1 −1 −1 1/3∗ −4/3∗ −5/3∗

G −1/2 −1/2 +1 0 0 0 0 0
H +1/2 +1/2 −1 0 0 1/2 −1/2 −1

Table 3. Exponents n for exponential growth enat of Rem, b, Um, and the wake shear Um/b observed

in the simulations. Asterisks indicate values used to approximate apparent (at)1/2 behaviour by
exponentials.

According to the classical self-similar solution (2.45), the growth rate nRe is shared
equally between the wake width and the wake velocity deficit such that nb = nU =
nRe/2. In order to assess whether this is the case in the simulations, the evolutions of
b and Um must be examined individually.

The time evolution of the wake width b for the same six plane strain cases considered
above is shown in figure 2, again plotted in log-linear coordinates and again with
the unstrained wake results included for comparison. Cases B and C, for which the
cross-stream direction is being expanded (a22 > 0), exhibit wake widths that become
proportional to exp(a22t), corresponding to nb = 1. In cases A and D, for which
the cross-stream direction is compressed (a22 < 0), the wake widths become roughly
constant (nb ≈ 0). For the two cases E and F, in which the y-direction is unstrained,
the wake spreading rate is similar to the τ1/2 evolution of the unstrained case (but
can also be reasonably described by exponentials with nb ≈ 0.3). The observed values
of nb are listed in table 3 and also in the ‘DNS’ column of table 1 to facilitate
comparison with the similarity analysis predictions.

The rapid spreading of the wakes in cases B and C limits the total strain that can
be achieved in the numerical simulations. For these cases, either the streamwise (case
C) or spanwise (case B) directions are being compressed while the wake width is
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Figure 2. Evolution of the wake width b for the plane strain cases. Line styles as figure 1 but with
E and F reversed.
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Figure 3. Evolution of the peak velocity deficit Um for the plane strain cases.
Line styles as figure 1.

growing exponentially. Thus the aspect ratio of the computational domain is far from
unity by the end of the simulation and roughly ‘spherical’ large turbulent eddies are
prevented from forming, as noted in § 3.3. Interestingly, in these cases such eddies are
apparently not forming, even prior to the time when the domain size becomes limited.
The turbulence in these two cases is characterized by many small-scale turbulent
motions (see § 4.4) and the limited domain size may not be affecting the simulations
as strongly as might be anticipated. Nevertheless, for large enough times these two
numerical simulations are undoubtedly affected by the computational domain size.
The shrinking (x, z)-domain also results in a reduced sample of eddies for computing
turbulence statistics. Combined with the numerous small-scale motions spread out
over a large cross-stream extent, this leads to noisy statistical profiles at large times
for these cases (see figures later in this section).

The peak velocity deficit Um shown in figure 3 also evolves at least approximately
exponentially after a developmental period, as expected since both b and the product
bUm ultimately grow exponentially. It is also clear that cases D and F, and to some
extent also case A, exhibit rapidly decaying velocity deficits, indicating that the wake
component of these flows is disappearing.

The exponential evolution of b and Um once the flows are developed suggests
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Figure 4. Ratio of wake shear rate to applied strain rate Um/(ab) for the plane strain cases: ——,
cases A (upper) and B (lower); – – – –, cases C (upper) and D (lower); · · · · · ·, cases E (upper) and
F (lower); and — ·—, unstrained wake (with same value of a).

that the mean flow does ultimately evolve self-similarly. The observed values of
nb and nU from the simulations are given in table 3. Although it is true that
nb + nU = nRe = (a22 − a11)/a, as seen in figure 1, nb and nU are not equal, except
for case C (and case G, which is discussed later in § 4.2). Note that when nb 6= nU ,
the shear rate associated with the wake profile does not remain in balance with the
constant applied strain rate and therefore such flows will ultimately no longer be
‘strained wakes’, with either the strain or the wake component of the flow becoming
irrelevant. Although the classical analysis does predict the observed value of nb for
case C, the analysis used to derive equation (2.45) is internally inconsistent for this case
because the time-derivative and advection terms in the mean momentum equation
(2.52) are zero when a11 + a22 = 0. Thus the classical self-similar solution (2.45) does
not describe the mean flow evolution of any of the plane strain cases.

Examination of table 1 indicates that the observed mean flow behaviour in the
simulations is in agreement with the equilibrium similarity solution (2.55), assuming
that E2 = 1

2
when a22 6 0. For cases with a22 < 0, this value of E2 was anticipated

on physical grounds (§ 2.2.2). For the cases in which a22 > 0, both solutions (2.54)
and (2.55) correctly describe the observed mean flow behaviour. In these cases, the
examination of the Reynolds stress evolution in § 4.1.3 may provide further evidence
as to which solution better describes the computational results.

From equation (2.24) the wake shear rate can be written as

∂Uw

∂y
=
−Um(t)

b(t)

df

dη
. (4.2)

The ratio of the wake shear rate to the applied strain rate is thus characterized by
Um/(ab), which is plotted in figure 4. Note that this ratio is of order 1 when the
strain is first applied because the strain rate was chosen such that the shear and
strain were of comparable importance. For cases B, D and F the relative strength
of the wake shear has dropped by over an order of magnitude by the end of each
simulation. Only for case C does this ratio reach a constant (a value of 2.82). Note
that since both b and Um eventually evolve exponentially, the ratio plotted in figure 4
should also grow roughly exponentially with an exponential growth rate of nU − nb
at large time. The difference nU − nb is also listed in table 3 and the values are
in good agreement with the slopes of the plotted curves. For a Gaussian profile
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Figure 5. Wake mean velocity profiles at seven roughly equally spaced times between τ− τ1 = 1.8
and the end of each simulation for (a) case A, (b) case B, (c) case C, (d ) case D, (e) case E, and (f )
case F. The arrows indicate the direction of change in time.

f(η) = exp(−4 ln 2η2), the maximum magnitude of df/dη occurs where η2 = (8 ln 2)−1

and equals
√

8 ln 2/e = 1.428 (the maximum value is 1.509 for the Wygnanski et al.
(1986) profile given below). The maximum shear rate to strain rate ratio is thus
roughly 50% larger than the plotted values of Um/(ab).

The sign of the spanwise strain affects the initial response of the wake shear to
the applied strain. For positive (expansive) spanwise strain (cases A and E) the wake
shear suddenly increases relative to the unstrained wake (the slope is discontinuous
in time). Conversely, for negative (compressive) spanwise strain (cases B and F) it
suddenly decreases. The wake shear in the cases with no spanwise strain (cases C
and D) initially evolves like that of the unstrained wake. This initial response to the
applied strain should be predictable by rapid distortion theory.

The wake mean velocity profiles at seven roughly equally spaced times between
τ− τ1 = 1.8 and the end of each simulation are shown in figure 5. From this figure it
is again apparent that the wake width for cases A and D is roughly constant, that the
deficit for case B is roughly constant, and that the deficits for cases D and F are small
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Figure 6. Scaled wake mean velocity profiles at seven roughly equally spaced times between
τ − τ1 = 1.8 and the end of each simulation for (a) case A, (b) case B, (c) case C, (d ) case D, (e)
case E, and (f ) case F. The dashed curve is the Gaussian − exp(−(4 ln 2)(y/b)2).

at large times. It can also be seen that the shear associated with the wake profile in
case C is constant (the curves are parallel) and that it is increasing in case E.

As noted previously, the exponential growth of Rem for the strained wakes indicates
that the mean velocity profiles for these cases are similar in shape. Normalizing the
magnitudes of the mean velocity profiles by Um(t) and scaling their widths by b(t)
results in the profiles illustrated in figure 6. The collapse for all six cases is good. The
dashed line in these figures represents a Gaussian profile. The strained wake profiles
are indeed close to Gaussian in shape, except that they decay to zero slightly faster at
the edges of the wake, as is the case with the mean profiles of unstrained wakes. Scaling
by Um and b collapses not only the mean profiles from a single simulation, but also
those of all the simulations. By comparing the simulation profiles with the Gaussian
curve for each case, it can be seen that the profile shape f(η) (see equation (2.24)) is
independent of the strain geometry and essentially the same as that of an unstrained
wake, corresponding very well to the fit f(η) = − exp(−2.548η2 − 0.896η4) given by
Wygnanski et al. (1986). Several investigators (e.g. Hill et al. 1963; Gartshore 1967;
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Figure 7. Mean u′2 profiles at seven roughly equally spaced times between τ− τ1 = 1.8 and the end
of each simulation for (a) case A, (b) case B, (c) case C, (d ) case D, (e) case E, and (f ) case F. The
arrows indicate the direction of change in time.

Narasimha & Prabhu 1972; Prabhu & Narasimha 1972; Nakayama 1987; Nayeri
et al. 1996; and Beharelle et al. 1996) have found a similar insensitivity of the mean
velocity profile shape to streamwise pressure gradients, streamwise curvature and
cross-plane shear.

4.1.2. The Reynolds stresses

The time evolution of the u′2 profiles for each of the six plane strain geometries is
shown in figure 7. For cases A, B, D and F this Reynolds stress decreases as the flow
evolves and, with exception of case B, the profiles for these cases change from the
double-humped shape typical of unstrained wakes to a single-humped profile with a
maximum near the centreline. As seen in figure 4, for these four flows the wake shear
rate continually diminishes relative to the applied strain rate. For cases C and E, the

cases in which a11 < 0, u′2 increases and the double-humped character of the profiles
is maintained, as is the relative importance of the wake shear relative to the applied
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Figure 8. Mean v′2 profiles at seven roughly equally spaced times between τ− τ1 = 1.8 and the end
of each simulation for (a) case A, (b) case B, (c) case C, (d ) case D, (e) case E, and (f ) case F. The
arrows indicate the direction of change in time.

strain. Despite the three-fold increase in the peak levels of u′2 for case C over the
time shown, the value at the centreline actually decreases by about 20%.

Profile evolutions for v′2 are shown in figure 8. Again the profile levels for cases
C and E are increasing in time, whereas those for the other cases are generally

decreasing. An exception to this is the v′2 profile evolution for case A, which initially
is increasing before becoming constant for the last four times shown. As will be

discussed later, this results from the production of v′2 by the global strain, which is
large enough, at least during the time period simulated, to counteract the general

downward trend of the Reynolds stresses in this case. The v′2 profile of an unstrained
wake is single-peaked with a maximum near the centreline. This form is maintained
in cases A, D and E, but cases B, C and F become double-peaked as a result of
the applied strain (although case F may be reverting to a single-peaked profile at

late times). This is especially pronounced in case C, where the value of v′2 at the
centreline decreases in time (by about 65% over the time interval in the figure) despite
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Figure 9. Mean w′2 profiles at seven roughly equally spaced times between τ − τ1 = 1.8 and the
end of each simulation for (a) case A, (b) case B, (c) case C, (d ) case D, (e) case E, and (f ) case F.
The arrows indicate the direction of change in time.

the general increase in the profile levels. Indeed it appears that case C is evolving
towards a flow that consists of two active regions away from the centreline, separated
by a relatively weakly turbulent zone in between. This is also apparent in the flow
visualizations shown in § 4.4 and becomes more prevalent at later times (quantified
later in figure 22).

The w′2 profiles are shown in figure 9. Unlike for the other two normal stresses,

the w′2 levels are increasing in cases B and F (the two cases with compression in the

spanwise direction, and therefore with production of w′2 by the mean strain) as well as

in cases C and E. For cases B and F, w′2 becomes the only significant Reynolds stress

at large total strains. The w′2 profiles of unstrained wakes are typically double-peaked.

As observed for u′2, in Cases B, C and E the double-peaked character of the w′2
profile is maintained, whereas in cases A, D and F the profiles become single-peaked.

As with u′2 and v′2, the centreline value of w′2 for case C decreases in time (by about
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Figure 10. Mean u′v′ profiles at seven roughly equally spaced times between τ − τ1 = 1.8 and the
end of each simulation for (a) case A, (b) case B, (c) case C, (d ) case D, (e) case E, and (f ) case F.
The arrows indicate the direction of change in time.

25% over the period shown) despite the generally increasing level of this Reynolds
stress at other y-locations.

Like all the normal stresses, the Reynolds shear stress u′v′ increases with time for
cases C and E (figure 10). For the other four flows (in which a11 > 0), the shear stress
decays, as expected from the decay of the wake shear for these cases (see figure 4).
For cases B, D and F, u′v′ decays essentially to zero by the end of each simulation.
For case A the decay is slower owing to a delay in the initiation of this decay. The
level of u′v′ does not begin to drop until τ− τ1 ≈ 4, presumably because for this case
the shear stress is produced by the global strain as well as by the wake shear. This
delayed decay is also apparent in the wake shear rate plotted in figure 4.

From the above examination it is clear that the form of the Reynolds stress tensor
varies widely between the different cases. In order to more easily visualize the relative
amplitudes of the Reynolds stress components at large total strain, all four stresses are
plotted together for each case at the final time tf of each simulation in figure 11. The
relative amplitudes can also be assessed by examining the Reynolds stress anisotropies
plotted in figure 30 of Appendix D. As noted previously, for cases B and F (the cases
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Figure 11. Reynolds stress profiles: ——, u′2; – – – –, v′2; · · · · · ·, w′2; — ·—, u′v′ at the final time tf
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(d ) case D (τ− τ1 = 8.49), (e) case E (τ− τ1 = 5.72), and (f ) case F (τ− τ1 = 8.49).

with compression in the spanwise direction) the only non-negligible component of

the Reynolds stress tensor at late times is w′2. These two cases have evolved to pure
straining flows with no significant wake shear or Reynolds shear stress. For cases
C and E (compression in the streamwise direction) all components of the Reynolds
stress tensor grow and all remain significant throughout the simulations. Cases A and
D (compression in the cross-stream direction) exhibit qualitatively similar profiles,

but with the roles of u′2 and w′2 interchanged. For these two flows, v′2 is produced
by the global strain and this term dominates the Reynolds stress tensor. The decay
of the wake shear rate in these two cases suggests that u′v′ will continue to decay to
insignificant levels with further straining, again resulting in pure straining flows. Also
apparent in these late-time profiles is the poor statistical sample for cases B and C
(stretched in the cross-stream direction) and, to some extent, cases E and F (no strain
in the cross-stream direction) as mentioned in § 3.3 and in the discussion of figure 2.

For three of the six strain geometries, the growth or decay of some of the Reynolds

stresses u′iu′j does not follow the behaviour of Um. In particular, in case A, v′2 increases
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while Um decreases, for case F, w′2 increases while Um decreases, and for case B, Um

is constant but all of the Reynolds stresses decrease except for w′2, which increases
markedly. The strain production of Reynolds stress is responsible for this. From
equations (2.22) it can be seen that compression in a particular coordinate direction
will result in production of velocity fluctuations in that direction and, conversely,
stretching will reduce the fluctuation intensity. Spanwise stretching will produce
Reynolds shear stress u′v′, whereas spanwise compression will destroy it. For cases
A, B and F, the strain production of the Reynolds stresses outpaces the Reynolds
stress decay associated with unstrained wakes and, for at least some time after the
application of the strain, the trends in Rij for these cases are predicted by the sign of
the strain production.

It should be noted that the small-scale turbulence is more isotropic. All the
components of the enstrophy tensor ω′iω′j for cases C and E increase in time (although
only modestly for case C), whereas those for the other cases all decay (here the
enstrophy is denoted by ω2, where ω2 = ω′iω′i). For each case the normal components

of ω′iω′j are comparable, with none being more than a few times larger than the others.
The more isotropic character of the small scales is also apparent in the relatively
weak anisotropy of the dissipation-rate tensor, the components of which are plotted
in figure 31 of Appendix D.

4.1.3. Similarity predictions for the Reynolds stresses

The evolution of the Reynolds stresses for most of the cases described in § 4.1.2
clearly cannot be predicted by classical self-similar analysis. The different Reynolds
stress components do not all grow or decay at the same rate and their evolutions
are not characterized by the square of the single velocity scale Um. The more general
equilibrium similarity solutions, however, do predict that the various components of
the Reynolds stress tensor evolve differently. These components are not all assumed
to scale as U2

m as part of the similarity analysis.
Despite this added generality of the equilibrium similarity solutions, the Reynolds

stress profiles cannot be self-similar throughout the entire periods simulated because
the single-peaked or double-peaked character of at least one of the normal Reynolds
stress profiles changes during the evolution (except for case E). Therefore these profiles
cannot be collapsed by a rescaling of magnitude and width, as required by equation
(2.28a). However, in other self-similar flows it is often observed that self-similar
evolution of the Reynolds stress profiles requires a longer flow development time to
become established than that required for similarity of the mean velocity profile. From
figures 2 and 3 it appears that self-similar evolution of the mean velocity profile width
and deficit does not occur until τ ≈ 6. Changes in the overall shape (single-peaked or
double-peaked) of the Reynolds stress profiles are generally complete not long after
this (τ ≈ 8 or 9), suggesting that continued evolution may indeed ultimately result in
similarity of the Reynolds stress profiles for all cases.

For cases C and E, all the Reynolds stresses increase in magnitude as time pro-
gresses, as does the deficit Um. It might thus be anticipated that the classical similarity
solution (2.45) applies for these cases. Examination of figure 12 suggests that all
the Reynolds stresses in case E do indeed scale like U2

m, but the exponential eat/2

growth predicted for the wake width in this case is inconsistent with the observed t1/2

behaviour in the computations. The Reynolds stresses in case C are not increasing
as rapidly as predicted by the classical self-similar analysis. The exponents Cij in
equation (2.39) are closer to a than to the predicted value of 2a during the simulated
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Figure 12. Scaled Reynolds stress profiles (a) u′2/(Um)2, (b) v′2/(Um)2, (c) w′2/(Um)2 and (d )
u′v′/(Um)2 at seven roughly equally spaced times between τ− τ1 = 1.8 and the end of the simulation
(τ− τ1 = 5.72) for case E.

period. Additionally, the classical analysis is internally inconsistent for this case with
a11 + a22 = 0, as discussed previously.

Case E is the only case in which the wake shear rate increases in time, increasing
in importance relative to the constant applied strain rate. As such, this case could
perhaps be expected to ultimately evolve like an unstrained wake, albeit one with an
increasing wake deficit and shear rate rather than decreasing as for an unstrained
case. Indeed there are similarities between the observed evolution in case E and
that of unstrained wakes. The wake spreading rate for case E is better described by
τ1/2 behaviour like that of unstrained wakes, rather than by exponential growth (see
figure 2). Note, however, that such τ1/2 behaviour is also predicted by the equilibrium
similarity solution (2.55) and is thus not only associated with unstrained wakes.

The Reynolds stress profiles for this case maintain the same double-peaked (u′2 and

w′2) or single-peaked (v′2) character exhibited by the corresponding profiles in an
unstrained wake. Additionally, scaling the Reynolds stresses by U2

m for this case (as
for an unstrained wake) does a reasonable job of collapsing the case E profiles in
figures 7 to 10, particularly for late times (see figure 12). Although the shapes of
the profiles in figure 12 are similar to those observed in unstrained wakes, the levels
of these profiles are a factor of two or more lower than the corresponding levels in
the unstrained case (see Moser et al. 1998). This is presumably due to the time lag
between the change in the wake velocity deficit and the resulting change in Reynolds
stress levels. Because the wake deficit is increasing in case E, the ratio u′iu′j/U2

m is
smaller than in an unstrained wake, in which the wake deficit decreases.

Given that the equilibrium similarity solution (2.55) was found to describe the
wake mean velocity profile evolution in all of the cases, it is of interest to determine
whether the observed Reynolds stress behaviour is predicted by this solution as well.
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Because similarity of the Reynolds stress profiles requires longer evolution times
than those required for similarity of the mean velocity profile, incomplete agreement
with the simulations might be anticipated, particularly given that for several of the
cases the computational domain size may be affecting the results for long times.
Additionally, it has already been pointed out above that, at least in some of the
flows, qualitative changes in the character of the Reynolds stress profiles may still
be occurring, preventing the similarity assumption (2.28a) from being completely
accurate. Thus complete similarity through to the level of the Reynolds stress profiles
may not be achieved in all of the computations.

Comparing the Reynolds stress predictions of the similarity solutions (2.55) and
(2.54) to the observed behaviour in the computations is not trivial. Even if appropriate
values of E1, E2 and E3 (or D1, D2 and D3) have been determined, a virtual origin
for the initiation of self-similar evolution and the initial values b0, U0

m and K0
ij at that

time still need to be chosen. The similarity solution can be more easily compared
to the computational results if the asymptotic long-time behaviour is considered,
the drawback of this being that the simulation data are probably not in such an
asymptotic state by tf . Nevertheless, the long-time behaviour of the Reynolds stresses
predicted by the equilibrium similarity solutions (2.54) and (2.55) can be compared
with the long-time trends in the computations, providing further insight into which
solution, if any, applies in each case. As will be seen below, for all the cases it is
possible to find an equilibrium similarity solution that predicts the observed mean
flow behaviour and gives reasonable predictions of whether a particular Reynolds
stress component will ultimately increase, decrease, or tend to a constant value.

The evolution of the Reynolds shear stress u′v′ given by the similarity solution (2.55)
is independent of the chosen values of E2 and E3. Similarly, the u′v′ predictions of
equation (2.54) do not depend on D1, D2 and D3. For this component of the Reynolds
stress tensor, the observed long-time behaviour in all the cases is qualitatively de-
scribed well by equation (2.55), although for case C, u′v′ is still weakly increasing at
the end of the simulation, whereas it should ultimately become constant according
to the similarity solution. However, the solution (2.54) also does a reasonable job
of describing the observed long-time behaviour of u′v′ for all cases except A and
D. In fact, the long-time predictions of these two similarity solutions are the same
when a22 > 0 and nearly the same when a22 = 0 (a factor of t difference between
the predicted exponential behaviours for non-zero E1), indicating that the long-time
behaviour of u′v′ cannot be used to determine which equilibrium similarity solution
better describes the observed evolution when a22 > 0.

The values of E2 and E3 do affect the self-similar behaviour of the normal Reynolds
stresses predicted by equation (2.55), but only have an impact on the leading-order

long-time behaviour of these stresses when a22 < 0 (and, exceptionally, for v′2 when
a22 = 0). Likewise, the values of D1, D2 and D3 affect the normal Reynolds stress
evolution in equation (2.54), but only change the predicted long-time trends by a
multiplicative constant. Thus to compare the long-time equilibrium similarity solution
predictions to the observed computational behaviour or to each other, it is only

necessary to select E2 and E3 when a22 < 0 (or when a22 = 0 for v′2 comparisons).

For the cases in which a22 < 0 (cases A and D), only solution (2.55) with E2 = 1
2

describes the observed mean profile evolution accurately. It is thus of great interest to
determine whether the Reynolds stress evolution for these cases is also predicted well
by solution (2.55). Both u′v′ and Um are predicted to decay ultimately like e−at for case
A and like e−2at for case D. Their ratio should thus approach a constant, as observed
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Figure 13. Alternatively scaled Reynolds shear stress profiles u′v′/(UmU
0
m) for (a) case A and (b)

case D at seven roughly equally spaced times between τ− τ1 = 1.8 and the end of each simulation.

in the simulations (figure 13). For these two cases, the compressive straining in the

vertical direction results in the dominance of v′2, which is predicted to approach a

constant by the similarity solution (despite decaying Um). For case A, v′2 does indeed
approach a constant, while in case D it is decaying only slowly at the end of the
simulation. In fact, if one takes E3 > −1 for case A and E3 > 0 for case D, then the
long-time behaviour of all four non-zero Reynolds stresses is qualitatively predicted
well by the general equilibrium similarity solution (2.55). These results are in contrast
to the Reynolds stress predictions of solution (2.54), which indicate growing (case

A) or constant (case D) u′v′ and rapidly growing v′2 (cases A and D), in complete
disagreement with the simulation results.

With v′2 approximately constant and the other Reynolds stresses decaying in cases
A and D, the pressure–strain condition (2.44) C11 = C22 = C33 cannot be satisfied.
Because none of the pressure–strain terms is negligible, this can only occur if the
pressure–strain profiles (see Appendix D) are not self-similar. Direct examination of
these profiles shows that this is indeed the case. For example, in case A the pressure–

strain is transferring energy out of u′2 and into v′2 and w′2 at τ = 3.75 but transferring

energy out of v′2 and into u′2 and w′2 by the end of the simulation at τ = 7.75,

when v′2 has become the largest Rij component. Thus a critical assumption used in
deriving the classical similarity solution is not valid during much of this simulation.
The general similarity solution (2.55), on the other hand, does not require that the
pressure–strain terms evolve self-similarly, but rather that they combine with the
turbulent transport and dissipation terms to scale like other combinations of terms
in the governing equations.

For the cases in which a22 > 0 (cases B and C), the mean profile evolution
is described well by both similarity solutions (2.54) and (2.55). Both equilibrium
similarity solutions predict the same leading-order long-time behaviour for all four
Reynolds stresses for case B. These predictions are in reasonable agreement with the

computations, although the levels of u′2 are still increasing at the end of the simulation
and have not yet reached the predicted constant value. Since the long-time Reynolds
stress predictions are the same for this case, they cannot be used to determine which
solution better describes the computational results.

For case C, the long-time Reynolds stress predictions of the two equilibrium

similarity solutions are the same for u′v′ and u′2, but different for v′2 and w′2. The

similarity solution (2.55) predicts the ultimate decay of v′2, whereas the computations
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indicate an increase, perhaps approaching the constant value −D2K
0
22 predicted by

solution (2.54). The continued increase of w′2 observed in the computations is in better
agreement with the linear increase K0

33(1 +D3t) predicted by solution (2.54) than with
the constant value predicted by solution (2.55). In this case, the computational results
are perhaps better described by the solution (2.54), although this conclusion should
be drawn tentatively, given the uncertainty regarding the applicability of ‘long-time’
predictions to the computational data.

When a22 = 0 the solution (2.54) predicts that the wake width should become
constant. This is not too different from the observed slowly varying t1/2 behaviour, so
the applicability of this solution to cases E and F should perhaps not be ruled out,
although the similarity solution (2.55) apparently better describes the evolution of the
mean velocity profile. The mean flow results for cases E and F suggest that E2 should
be about 1

2
, as was the case when a22 < 0. For case E, the exponential long-time

behaviour predicted for u′2 and u′v′ by both solutions (2.54) and (2.55) is the same

(up to a factor of t or t2), but solution (2.54) predicts exponential growth for v′2 and

w′2 when D2 and D3 are not zero, whereas solution (2.55) predicts the ultimate decay

of these Reynolds stresses (albeit a potentially delayed decay for w′2 when E1 is large
(positive) and E3 is negative). The computational results, which indicate that all the
Reynolds stresses increase like U2

m, are thus in better agreement with solution (2.54).†
For case F, both solutions (2.54) and (2.55) predict the same long-time exponential

behaviour for all the Reynolds stresses except v′2 (again up to factors of t, t2 or tE3 ).

The stresses u′v′ and u′2 are expected to decay, whereas w′2 should ultimately grow

rapidly, as observed in the simulations. Solution (2.54) requires that v′2 approach
a constant, while from solution (2.55) a 1/t decay is expected when E2 = 1

2
. The

sustained decay of v′2 in the computations (figure 8f ) suggests that the behaviour in
this case is better described by solution (2.55). However, it should be remembered
that solution (2.54) can be generalized if the pressure–strain terms are not required
to separately scale like the other terms in the equation. In this case, all time-evolution
behaviours of v′2 and w′2 satisfy the self-similar constraints and this generalized form
of similarity solution (2.54) could apply in case F.

In summary, the observed flow evolution in the simulations is very different from
that predicted by classical self-similar analysis. The evolution of the wake mean
velocity profile is well described for all the cases by the equilibrium similarity solution
(2.55) (with E2 = 1

2
when a22 6 0) as well as by the equilibrium similarity solution

(2.54) for the cases in which a22 > 0. By the end of the simulations, complete similarity
of the Reynolds stress profiles has probably not been attained for most of the cases
considered. Despite this, the predictions of the solution (2.55) for the Reynolds stress
components are overall quite good, being much more accurate than the U2

m scaling
for all components predicted by classical self-similar analysis. However, cases C and
E may be better described by solution (2.54), and case B can apparently be described
by either of these two solutions. As pointed out in § 2.2.2, for the similarity solution

(2.54), cases C and E are the only two cases in which the viscous diffusion of w′2 can

† Note that for case E solution (2.54) predicts that the normal Reynolds stresses scale like U2
m, but

that the Reynolds shear stress u′v′ increases like Um. However, normalizing the data in figure 12(d )
by UmU

0
m as in figure 13, rather than by U2

m, also results in reasonable collapse of the curves at
long times. Given the smaller value of tf for case E, it is difficult to determine which of these
normalizations better fits the long-time results.
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Figure 14. Time evolution of (twice the) turbulence kinetic energy at the wake centreline: (a)
q2
c /(U

0
m)2 and (b) q2

c /U
2
m. ——, Cases A (upper curve) and B (lower curve); – – – –, cases C (upper

curve in (a) and lower curve in (b)) and D (other dashed curve); · · · · · ·, cases E (upper curve in
(a) and lower curve in (b)) and F (other dotted curve); and — ·—, unstrained wake. Also shown
for case C are the same quantities calculated with q2

m instead of q2
c (— - —). Note the higher initial

value of the curves involving q2
m.

be balanced by the other terms in the Reynolds stress evolution equation while still
satisfying the pressure–strain condition (2.43).

For long times, only case C maintains a balance between the wake shear and the
applied strain, and thus perhaps sustained ‘strained wakes’ are only possible for this
strain configuration (the temporally evolving analogue of a wake developing in an
adverse pressure gradient). The other flows are apparently moving towards alternative
similarity states (that of an unstrained wake with increasing velocity deficit for case
E, pure straining flows with only spanwise velocity fluctuations for cases B and F,
and pure straining flows dominated by vertical velocity fluctuations for cases A and
D). This change in character during the flow evolution, even if in accord with an
equilibrium similarity solution, is likely to make modelling the turbulence in such
flows difficult.

4.1.4. Time evolution of other turbulence statistics

Because the strained wakes are not evolving in accordance with the classical self-
similar solution, the time evolutions of the Reynolds stresses (and therefore also of q2)
do not, in general, scale with U2

m. The lack of complete self-similarity of the Reynolds
stress profiles implies that these profiles cannot be characterized by a single velocity
scale. Nevertheless, it is useful to examine the time evolution of some representative
level of the profiles and for this purpose the centreline values (indicated by a subscript
c) are used. For case C, where the centreline values evolve differently from the peak
levels, the evolutions at the location of maximum q2 are also tracked. This maximum
value of q2 is denoted by q2

m. How well the centreline and maximum values represent
the general level of the various profiles can be assessed by examining figures 7 to
10. Note that for cases A, D and F the maximum value of q2 eventually occurs at
the centreline because the normal Reynolds stress profiles become single-peaked. The
profiles remain double-peaked for cases B and E (only moderately so for case E), but
the trends for both q2

c and q2
m are similar in these cases. The profiles for case C are

also double-peaked, but the evolutions of the values at the peak and at the centreline
are different, as noted previously and discussed further in § 4.3.

The time evolutions of various turbulence statistics are shown in figures 14 to 17.
Results are shown for the unstrained wake (chain-dotted line) as well as for the six
strained cases. For case C, statistics computed with both the centreline values (q2

c , εc
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and ω2
c ) and the values at the location of maximum q2 (q2

m and εq) and maximum ω2

(ω2
m) are plotted.
The evolution of twice the turbulent kinetic energy (per unit mass) q2 is shown

in figure 14. The value of q2 typically does not vary as rapidly as that of U2
m, with

at most about a factor of five change in q2 over the course of each simulation
(figure 14a). The strongest growth occurs in case E and at late times for cases B and
F. The ratio q2

c /U
2
m is constant for the classical self-similar solution (2.45) derived

in § 2.2. Examination of figure 14(b) confirms that the strained wakes are generally
not evolving in accordance with this solution. The ratio q2

c /U
2
m is roughly constant

for case E (as expected from the results presented in figure 12) and the unstrained
wake, but not for the other flows. The ratio is roughly constant in case B, but this

is a temporary situation, resulting from the growth of w′2 offsetting the decay of

u′2 and v′2; once these two Reynolds stresses become insignificant near the end of

the simulation w′2 and q2
c /U

2
m begin to grow rapidly, with C33 approaching 2a. The

remaining cases A, C, D and F exhibit periods of apparent exponential change in the
ratio q2

c /U
2
m. Note that the cases with decreasing velocity deficits (D, F and A) exhibit

increasing q2
c /U

2
m, whereas those with increasing deficits (E and C) have decreasing

q2
c /U

2
m (or nearly constant for late times in case E). This indicates that, except possibly

for case E, the net turbulence production or dissipation cannot keep pace with the
rapidly changing mean flow.

Although q2 is not changing as rapidly as U2
m, it is changing at a rate consistent

with the general equilibrium similarity predictions. When a22 > 0, the q2 evolutions
predicted by solutions (2.54) and (2.55) are the same, being proportional to e2at (with
perhaps extra factors of t when a22 = 0). The long-time behaviour of cases B, C, E and
F shown in figure 14(a), although perhaps not yet fully in the asymptotically large
time limit, is consistent with such exponential growth (where for case C the maximum
levels, representative of the overall profile levels, are considered). The predictions of
the two similarity solutions are not the same when a22 < 0, as discussed in § 4.1.2.
For these cases (A and D), only solution (2.55) with E2 = 1

2
describes the observed

behaviour in the simulations, predicting that q2 should approach a constant (assuming
that E3 > −1 for case A and E3 > 0 for case D) rather than grow like e2at as predicted
by solution (2.54).

The dissipation rate ε is plotted in figure 15(a). For the four strained flows in
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c and εc

(— - —). Note the higher initial value of the curves involving q2
m.

which the wake shear decays, ε decreases roughly as for the unstrained wake. Both
the wake shear and ε increase in case E and both are about constant in case C (the
peak value εm showing a slight increase and the centreline value εc decreasing for this
latter case). It should be noted, however, that while these values may not differ from
their unstrained counterparts in many cases, these levels are sustained across strained
wakes of very different widths than that of the unstrained wake.

The evolution of the dissipation rate normalized by the local wake width and
velocity deficit is shown in figure 15(b). In general, the ordering of the different cases
is the same as that observed for q2/U2

m in figure 14(b). Again, several of the flows have
periods of approximate exponential growth. According to classical self-similar scaling,
the ratio εb/U3

m should be constant for similarity. In case B it is roughly constant,
but this is a temporary situation, as noted above. The value in case E approaches a
constant during the latter part of the simulation, as seen for q2/U2

m. For the other
cases ε does not scale like U3

m/b at any time during the evolution.
The centreline value of the turbulence time scale q2/ε is compared to the time scale

of the constant and uniform strain rate 1/a and to the time scale associated with the
mean wake shear rate b/Um in figures 16(a) and 16(b) (these two mean time scales
were compared to each other in figure 4). Because a is constant, the time scale q2

c /εc
evolves like the ratio aq2

c /εc shown in figure 16(a). The value of the turbulence time
scale increases for all the flows examined and is relatively similar to the value in
the unstrained wake (although the value in case A approaches twice the unstrained
value). Note that the relative insensitivity of the time scale to the orientation of the
strain results in curves in figure 16(b) that are in the same relative order as those in
figure 4. From figure 16(a) it can also be seen that the time scale evolutions for cases
A and E, the flows with expansive strain in the span, are very similar for much of the
flow evolution and slightly higher than the other curves. Likewise, cases B and F, with
compressive strain in the span, exhibit similar evolution at slightly lower values of the
time scale ratio (close to that of the unstrained wake). Note that the dimensionless
quantity aq2

c /εc can be written as

aq2
c

εc
=

q2
c

U2
m

U3
m

εcb

ab

Um

, (4.3)

and is therefore a combination of results already presented in figures 14(b), 15(b) and
figure 4.
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curve involving q2
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For an unstrained wake the turbulence time scale quickly comes into equilibrium
with the wake shear (figure 16b). The ratio (q2

c /εc)/(b/Um) reaches a constant value
of about 3.9 (note that this corresponds to (∂U/∂y)max(q

2
c /εc) = 5.6 for a Gaussian

mean profile). This is not the case for the strained wake flows, which, at least
initially, exhibit roughly exponential evolution of (q2

c /εc)/(b/Um). During this initial
exponential period, the curves are paired symmetrically around the unstrained case.
Changing the sign of the global strain changes the sign of the exponential growth rate.
For τ− τ1 of less than about 2, the exponential growth rates n, defined analogously to
those given in equation (4.1), are about ±1.5 for cases E and F, ±1.0 for cases A and B,
and ±0.5 for cases C and D. At late times, cases A, B, E and F are perhaps coming into
equilibrium, with (q2

c /εc)/(b/Um) becoming roughly constant. The expected further

rapid increase of w′2 in cases B and F, however, will presumably result in the ultimate
increase of this ratio at later times. Cases C and D maintain exponential growth
throughout their evolution, although for case D the exponential decay rate n becomes
about 2.5 times larger than its initial value when τ − τ1 exceeds about 2.5. Thus,
unlike for the other flows in which (q2

c /εc)/(b/Um) ultimately increases or approaches
a constant, for case D the wake shear is decaying faster than the turbulent time scale
is increasing.

The turbulence Reynolds number q4
c /(εcν) is shown in figure 17(a). It increases for

all the cases, despite the decreasing wake Reynolds number Rem for cases A, D and
F (see figure 1). Turbulence is thus sustained for all orientations of the applied strain.
From this plot it is also clear why the computational cost to continue cases E and C
to larger total strains is prohibitive (see § 3.3).

In an unstrained wake, the r.m.s. vorticity fluctuation level is in balance with the

wake shear rate and
√
ω2b/Um becomes constant. For all the free shear flows examined

here, ε = νω2 to within a few percent (a result of relatively weak inhomogeneity) and

√
ω2

b

Um

≈
√
εb

U3
m

√
bUm

ν
. (4.4)

Thus, according to classical similarity theory, the ratio
√
ω2b/Um should evolve as

Re
1/2
m . The observed evolution of

√
ω2
c b/Um is shown in figure 17(b). As expected
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——, case G; – – – –, case H; and — ·—, unstrained wake (with same value of a).

from the previous discussion, none of the flows is evolving in accordance with the
classical self-similar prediction, except possibly case E at late times. For all cases, the
strength of the vorticity fluctuations ultimately increases relative to the wake shear
(considering ω2

m for case C rather than the decaying centreline value ω2
c ). In contrast,

this ratio would decay in cases A, D and F if the evolution followed the classical
self-similar solution. Like q2

c /εc and Um/b, the initial response of
√
ω2
c b/Um to the

strain is determined by a33. Note that the relationship ε ≈ νω2 can also be used to

cast
√
ω2(q2/ε), the other time scale ratio involving ω2, as approximately

√
q4/(εν).

4.2. Axisymmetric strain cases

Examination of the classical self-similar solution (2.45) suggests the possibility of
a self-similar evolution with both constant wake width and constant wake velocity
deficit when a22 − a11 = 0 (a is taken here as a = |a33| = 2|a11| = 2|a22|). In order to
verify whether this solution describes the actual flow evolution, two cases with such
axisymmetric strain, cases G and H (a33 > 0 and a33 < 0, respectively), were run.
The evolutions of the wake width, velocity deficit, and the product and ratio of these
quantities are shown in figure 18. The scaled wake mean velocity profiles for these
two cases are similar to those shown in figure 6, i.e. they decay slightly faster than a
Gaussian at the edges of the wake. This self-similarity of the mean velocity profiles
results in constraint (2.35) holding for these flows (as it did for the plane strain cases)
and the Reynolds number Rem is constant, as seen in figure 18(a). According to the
classical self-similar solution both b and Um should also be constant. Although this is
approximately the case for case G (especially given the limited sample of large-scale
eddies at late times), it is not so for case H (figures 18b and 18c). In case H the wake
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shear rate decays and does not remain in balance with the constant applied strain
rate.

There is no choice of applied strain for which the equilibrium similarity solution
(2.54) predicts statistically stationary turbulence. For both the wake width and deficit
to be constant, this solution would require both a22 and a11 to be zero, which is not
possible for non-zero applied strain. On the other hand, the equilibrium similarity
solution (2.55) does predict constant wake width, wake deficit and Reynolds stresses
when a11 = a22, E1 = −1, E2 = 1

2
and E3 = −2 (it reduces to the classical solution

(2.45) in this instance). For other non-zero values of E1 the solution (2.55) approaches
statistical stationarity at long times if E2 and E3 have these values and the strain rates
a11 = a22 are negative (e.g. case G).

Although the roughly constant evolutions of b and Um for case G are in agreement
with both the classical self-similar solution (2.45) and the equilibrium similarity
solution (2.55) (with E2 = 1

2
as expected for flows with a22 < 0), the Reynolds stresses

increase in amplitude throughout most of the simulation and therefore do not exhibit

statistical stationarity. The vertical velocity fluctuation intensity v′2 increases most
rapidly and becomes the dominant Reynolds stress by the end of the simulation
(see figure 19a). The other three non-zero Reynolds stresses do approach a constant
magnitude beyond τ ≈ 6, suggesting that further evolution may possibly lead to
statistical stationarity. Since the similarity solution (2.55) only approaches stationarity
at long times, it is possible that this solution may be able to describe the observed
Reynolds stress behaviour sooner than the classical self-similar solution (2.45). The
equilibrium similarity solution (2.54) predicts exponentially decaying wake width,
exponentially increasing wake deficit, and increasing Reynolds stresses for case G.
These mean flow predictions are clearly inconsistent with the simulation results.

Case H is clearly not evolving in accordance with the classical self-similar solution.
The wake width is increasing, the wake deficit is decreasing, and the Reynolds stresses

are decreasing except for w′2, which ultimately increases rapidly after being roughly
constant until τ ≈ 5. However, the width b and velocity deficit Um are evolving
exponentially, at least for times after τ ≈ 6. The exponential growth rates are about
Cδ = a22 and CM = −a22, consistent with the predictions of both the similarity
solutions (2.54) and (2.55). Both of these similarity solutions also predict the correct
behaviour of all of the Reynolds stresses, the predicted exponential growth or decay
rates of both solutions being the same at large times.

Thus, as with the plane strain cases examined in § 4.1, when the cross-stream
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direction is expanded, the flow width ultimately increases as if being simply stretched
by the mean strain, not at the rate predicted by classical self-similar analysis. Case G
is also in agreement with the plane strain results, in that compression of the cross-
stream direction results in a (roughly) constant wake width. The apparent agreement
with the classical self-similar solution for case G is then forced by constraint (2.35)
and the chosen values of a11 and a22.

The strain geometry of case G can be created by combining the strains of cases A
and E (at half their amplitude) and indeed the relative amplitudes of the Reynolds
stresses shown in figure 19(a) are intermediate between those for case A and case E,
shown in figure 11. The strain geometry of case H can be generated by combining

the strains of cases B and F and it is therefore not surprising that w′2 becomes
dominant, as it does for those two flows that also have compressive spanwise strain
(see figure 19b).

The quantities q2
c /U

2
m, εcb/U

3
m, aq2

c /εc, (q2
c /εc)/(b/Um), q4

c /(εcν) and
√
ω2
c b/Um (not

shown) and Um/(ab) (figure 18d ) are also generally intermediate between those of
cases A and E for case G and intermediate between those of cases B and F for case
H (the exceptions being the late-time behaviour of the three quantities involving both
εc and qc for case H, in which the ratios exceed those of both cases B and F). As
noted before, aq2

c /εc is generally insensitive to the orientation of the strain, with some
variation depending on the sign of the spanwise strain. Up to τ− τ1 ≈ 4.3, the values
for cases A, E and G (expansive spanwise strain) are very similar, as are those for
cases B, F and H (compressive spanwise strain). The initial responses of Um/(ab) and√
ω2
c b/Um to the strain are also determined by a33. As with the plane strain cases, the

initial behaviour (up to τ− τ1 ≈ 3 in these flows) of (q2
c /εc)/(b/Um) is approximated

well by an exponential, where the sign of the growth rate depends on the sign of the
applied strain.

4.3. Other strain rates

As noted previously, the strain rate a was chosen so that the time scale of the strain
closely approximated the turbulence time scale at the wake centreline, q2

c /εc. In order
to assess the impact of the rate of straining, two additional cases were run with strain
rates a factor of four smaller and larger than the baseline value. The geometry of
case C was chosen for these additional runs because of its relevance to the aircraft
industry. As listed in table 2, for the slowly strained case SC, ab0/U0

m = 0.068, whereas
for the more rapidly strained case FC, ab0/U0

m = 1.084.
Combining these two simulations with case C and the results for the unstrained

wake (a = 0) yields four simulations, identical at τ1 = 3.16, that evolve with the
same strain geometry, but with the strain applied at different rates. The evolutions
of various dimensionless mean flow quantities for these four flows are shown in
figure 20. Increasing the strain rate a increases the rate at which the wake spreads,
the rate at which the deficit increases, and the rate at which the Reynolds number
Rem increases. The equilibrium value of the wake shear rate also increases with a,
although it remains lower than the value at τ1.

The strained wake curves in figure 20 are evolving exponentially, as was seen for
case C previously. In an effort to collapse the different evolutions, the same quantities
have been plotted against a(t− t1), the logarithm of the total strain, in figure 21. Note
that the results for the unstrained wake (a = 0) have been replaced by analytical
exponential curves. Also, in figure 21(d ) the wake shear has been non-dimensionalized
by the strain rate a rather than by its initial value. As predicted by equation (2.32), the
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c for – – – –, case SC; ——, case C; and · · · · · ·,

case FC.

collapse of Rem for the various cases is excellent. The slight deviations are a result of
small differences in the shape of the scaled mean velocity profiles. Once the flows are
developed, both the wake width and peak velocity deficit grow exponentially at the
same rate as for case C in these coordinates, being proportional to eat. As the strain
rate increases, the time required to reach this asymptotic exponential growth rate
becomes shorter. For case FC with the largest strain rate, the width and deficit begin
growing exponentially almost immediately after the strain is applied. This suggests
that this case is close to the rapid distortion limit in which the turbulence does not
have time to respond to the straining and is simply distorted in accordance with
the mean strain. As was noted in figure 20(d ), the wake shear for these strained
wakes approaches a constant, although this constant is a function of the strain rate
a. The ratio of the strain time scale to the shear time scale in case FC is about 0.84.
Apparently the rapid distortion limit noted above is reached when these time scales
are of the same order.

As discussed in § 4.1, for the strain geometry of case C the turbulence is more
energetic away from the wake centreline. In order to investigate whether this trait
is dependent on the strain rate, the evolutions of both q2

m and q2
c have been plotted

in figure 22(a) for all three cases. Note that the centreline value q2
c decays for cases

C and SC but increases for case FC. In contrast, q2
m ultimately increases for all

three cases. For the rapidly strained case FC, the growth is close to exponential
throughout the entire evolution, scaling approximately like exp(a(t− t1)/2) for q2

c and
exp(0.85a(t − t1)) for q2

m. For the other two cases, the growth is less convincingly
exponential and there is a delay before q2

m increases. The net result is that the ratio
q2
m/q

2
c becomes much larger in the slowly strained flow than in rapidly strained flow

(figure 22b). The corresponding value of this ratio during the self-similar period of
the unstrained wake is about 1.4 (the initial level at t = t1). Note that for all cases
the ratio q2

m/q
2
c is fairly constant (and equal to the unstrained value) until about

a(t− t1) ≈ 0.8, suggesting that the q2 profiles are similar in shape until this time. The
evolution of the enstrophy ratio ω2

m/ω
2
c (where the subscript m indicates the peak

profile level) is similar to that of the kinetic energy ratio q2
m/q

2
c for all three strain

rates.

Similar plots of q2
m/q

2
c can be made for the other strain geometries. This ratio

approaches 1.0 for cases A, D, E and F because the profile maxima are at the
centreline. It grows to close to 2.0 in case B for a(t− t1) > 1.0 (ω2

m/ω
2
c is also about
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Figure 23. Evolution of the maximum values of dimensionless quantities: (a) q2
m/U

2
m, (b)

εmb/U
3
m, (c) (U0

m/b
0)q2

m/εq , (d ) (q2
m/εq)/(b/Um), (e) q4

m/(εqν), and (f )
√
ω2
m/(Um/b) for the

cases with different strain rates versus a(t − t1). – – – –, Case SC; ——, case C; · · · · · ·,
case FC; and — ·—, (q2

m/U
2
m)0 exp(−3a(t − t1)/2) for (a), (εmb/U

3
m)0 exp(−3a(t − t1)/2) for

(b), (U0
m/b

0)(q2
m/εq)

0 exp(a(t − t1)/2) for (c) and (d ), (q4
m/(εqν))

0 exp(a(t − t1)) for (e), and

(
√
ω2
m)0/(U0

m/b
0) exp(a(t− t1)/4) for (f ).

2.0 for this case). Thus, unlike in case C, the level of the turbulent kinetic energy at
the centreline in case B remains in proportion to the peak level.

For the case-C-type strain geometry, the centreline values of the mean profiles of
the various turbulence statistics are not representative of the overall profile levels
beyond a(t − t1) ≈ 0.8, particularly for slow strain rates. Thus, for comparing the
turbulence in these cases with varying strain rate, the quantities q2

m, εq , εm and ω2
m will

be used instead of the corresponding centreline values.
As noted in the discussion of case C previously, the growth rates observed for

the mean flow quantities for this strain geometry are the same as those predicted by
both equilibrium similarity solutions (2.54) and (2.55), as well as those predicted by
the internally inconsistent classical self-similar solution (2.45). Variation of the strain
rate has not changed the observed exponential growth behaviour of δ and Um. The
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classical self-similar analysis predicts that the Reynolds stresses (and therefore q2)
should scale like U2

m and that the ratio q2/U2
m should be constant. As can be seen

in figure 23(a), this is not the case for any strain rate (the ratio at the location of
maximum q2 is shown in the figure, but the ratio at the wake centreline yields the
same result). The turbulent kinetic energy cannot keep pace with the exponentially
increasing velocity deficit and the ratio q2

m/U
2
m decays roughly like exp(−3a(t− t1)/2)

(somewhat slower for case FC). Turbulent kinetic energy is produced by both the
mean strain and the wake shear, but at a rate that cannot keep pace with the rapidly
increasing deficit. Similarly, the dissipation rate εm grows less rapidly than U3

m/b
(figure 23b). The equilibrium predicted by the classical self-similar analysis cannot
be achieved in the presence of exponentially growing mean flow width and velocity

deficit. As with case C, the behaviour of v′2 and w′2 is better described by the
equilibrium similarity solution (2.54) than by (2.55).

The evolution of the turbulence time scale q2
m/εq (and also q2

c /εc) does not collapse
when plotted against a(t−t1), as can be seen in figure 23(c). In fact the curves collapse
better when plotted simply against the time τ as is done in figure 24(a), which also
includes the time scale evolution for the unstrained wake flow (there is even less
scatter for the q2

c /εc curves). This is remarkable, indicating that the turbulence time
scale evolution is mostly independent of the strain rate as well as the strain geometry
(see §§ 4.1 and 4.2) and suggests that its evolution is reasonably well predicted by that
in an unstrained wake. Because the time scale evolution is nearly independent of the
strain rate, the dimensionless ratio aq2

m/εq differs roughly by a constant multiple for
the different cases, as shown in figure 24(b). Although the straining has a pronounced
effect on the mean flow evolution it is less strongly coupled to the turbulence.

The collapse of the time scale ratio (q2
m/εq)/(b/Um) when plotted against a(t − t1)

is good, however (figure 23d ). As with q2
m/U

2
m, the value for the rapidly strained

case FC changes more slowly than those for the other two cases. The evolutions of
the dissipation εmb/U

3
m, turbulence Reynolds number q4

m/(εqν), and time scale ratio√
ω2
mb/Um all are fairly independent of the strain rate when plotted against a(t− t1).

Note that the evolutions of these quantities for the various cases are very different
when plotted against τ, unlike the time scale q2

m/εq examined above. Again, using the
centreline values q2

c and εc does not change these conclusions.
Examination of figures 21 and 23 suggests that many characteristics of the strained

wakes are similar when compared at the same value of total strain exp(a(t− t1)). In
figures 25 and 26 profiles of the mean wake velocity deficit and Reynolds stresses
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cases with different strain rates. – – – –, Case SC; ——, case C; and · · · · · ·, case FC.

are plotted at a(t− t1) = 1.2, corresponding to a total strain of 3.3. This value (about
half the total strain reached by the end of the simulations) was chosen to ensure that
the flows were developed (in the asymptotic exponential growth periods for the wake
width and velocity deficit) but still had adequate statistical sample (x-domain extent)
to ensure reasonable mean profiles.

Consistent with the results presented in figures 21(b) and 21(c), the mean profiles
plotted in figure 25(a) decrease in width and increase in peak deficit level as the strain
rate is increased. The change from the baseline case C to the rapidly strained case FC
is small, again suggesting that case FC is close to the rapid distortion limit. Scaling
the mean wake velocity profiles by the peak deficit and width results in good collapse,
again indicating that the shape of the mean profile is nearly universal (figure 25b). As
noted previously, wake mean velocity profiles (both strained and unstrained) decay
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slightly more rapidly to zero at the edges of the wake than is the case with a Gaussian
profile. From figure 25(b) it is apparent that this effect possibly becomes slightly more
pronounced as the strain rate decreases.

Examination of the Reynolds stress profiles in figure 26 again indicates that for a
fixed value of total strain the wake narrows with increasing strain rate. Although the
decrease in width between the baseline case C and the rapidly strained case FC is

minimal, the increase in the level of both u′2 and w′2 between these two cases is large,
with the peak levels of these profiles roughly doubling with each quadrupling of the

strain rate. In contrast, the stress v′2 changes little between cases C and FC and the
Reynolds shear stress u′v′ decreases. This implies a substantial decrease in the shear

correlation coefficient u′v′/
√
u′2v′2, consistent with the Reynolds stress production

being dominated by the mean strain rather than the wake shear (see figure 32 in
Appendix D). The collapse of the various profiles in figure 26 is improved (particularly

for the u′2 and w′2 profiles of cases SC and C) if the curves are scaled by Um and b,
suggesting that part of the differences in the Reynolds stress profiles are associated

with the changes in these mean quantities with strain rate. The v′2 profile for case
FC is not double-peaked and therefore cannot be scaled to match the profiles of the
other two cases.

The growth of the v′2 and w′2 profiles in time for case SC is less pronounced
than that for cases C and FC. This is more in line with the long-time behaviour of

equation (2.55), which predicts the ultimate decay of v′2 and the approach of w′2 to a
constant when E2 = 1

2
and E3 = 1, rather than continued increase of these Reynolds

stresses. Of course E2 need not be 1
2

when a22 > 0 and the Reynolds stress profiles for
case-C-type straining are not yet completely self-similar anyway (see figure 22b), so
this may be coincidental rather than the result of better equilibrium associated with
slower straining.

4.4. Flow visualization

The structure of the turbulence in strained wakes depends strongly on the orientation
of the strain relative to the wake. In this section, contours of spanwise vorticity are
used to visualize the flow structure at the time a(t− t1) ≈ 1.2, corresponding to a total
strain of about 3.3. This time was chosen, as in § 4.3, to allow for significant straining
without excessive loss of computational domain size. Instantaneous slices through the
full computational domain at z = 0 for each of the ten strained wakes listed in table 2
are shown in fixed laboratory coordinates (not the moving computational coordinate
system) in figures 27, 28 and 29. The strained wakes are grouped into the three figures
according to the sign of their spanwise strain component. A visualization of the
initial field used for all the computations is also included in figure 27(a). Other flow
visualizations of the unforced wake simulation used to generate the initial conditions
for the strained wake computations can be found in Moser et al. (1998).

The cases with expansive spanwise strain are shown in figure 27. The frames in the
figure are drawn to scale (the distance between the tick marks being b0) and each
frame has the same contour levels (this is also true of the following two figures 28
and 29). For these cases, the spanwise domain size increases in time. For case A
with a11 = 0, the statistical sample of eddies in the computational domain increases,
while for case E, in which a11 < 0, the evolution is quickly constrained by the limited
streamwise domain. The streamwise domain is also reduced in case G, although at
only half the rate at which the spanwise domain extent is increased.
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Figure 27. Contours of spanwise vorticity in the z = 0 plane at (a) t = t1 for the unstrained wake,
(b) a(t − t1) = 1.20 for case A, (c) a(t − t1) = 1.20 for case E, and (d ) a(t − t1) = 1.20 for case G.
Negative contours are dotted, positive contours are solid, and the contour increment is 3.0U0

m/b
0.

Tick marks are at b0 intervals. Note that the strained wakes shown here all have expansive spanwise
strain.

In case A (figure 27b) the wake width has reached a roughly constant value by the
time shown, following a small initial decrease in width relative to the initial condition
(figure 27a). The structure has become comparatively more organized, with fewer
vortical eddies across the width of the layer and regions of apparently non-vortical
fluid crossing the layer at several locations. As time progresses, the stretched vortical
structures tend to amalgamate with other vortical regions of the same sign, further
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Figure 28. Contours of spanwise vorticity in the z = 0 plane at (a) a(t− t1) = 1.24 for case B, (b)
a(t − t1) = 1.22 for case F, (c) enlargement of a central portion of (b) to achieve same scale as in
(a) and (d ), and (d ) a(t− t1) = 1.26 for case H. Negative contours are dotted, positive contours are
solid, and the contour increment is 1.5U0

m/b
0. Tick marks are at b0 intervals. Note that all cases

shown here have compressive spanwise strain.

increasing the organization of the flow. This ‘collapse’ of strained vorticity is similar
to that observed in the model problem described by Lin & Corcos (1984). Indeed,
some of the vortical eddies (such as those at x ≈ 1.5b0 and x ≈ 2.8b0) are similar
in cross-section to the ‘collapsing’ rib vortices in the strained ‘braid’ region of a
mixing layer, which was the flow Lin & Corcos were seeking to model. Despite the
exponentially decaying value of Rem and the increasing organization of the vorticity,
however, the turbulence Reynolds number q4/(εν) increases, and it is unlikely that
this flow will relaminarize.

Case E (figure 27c) is compressed in the streamwise direction. The spanwise vorticity
fluctuations intensify and the large-scale organization suggests one oscillation of a
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Figure 29. Contours of spanwise vorticity in the z = 0 plane at (a) a(t − t1) = 1.21 for case SC,
(b) a(t − t1) = 1.21 for case C, (c) a(t − t1) = 1.20 for case FC, (d ) a(t − t1) = 1.20 for case D,
(e) enlargement of a central portion of (d ) to achieve same scale as in (a), (b) and (c). Negative
contours are dotted, positive contours are solid, and the contour increment is 2.0U0

m/b
0. Tick marks

are at b0 intervals. Note that all cases shown here have no spanwise strain.

Kármán vortex street. Relative to the increasing wake shear, the strain becomes less
and less significant and some features of this flow resemble those of an unstrained
wake. As noted previously, this case is probably constrained by the streamwise
domain size after the time shown. Case G (figure 27d ) is compressed equally in both
the streamwise and cross-stream directions and is intermediate between the above
two cases.

The cases with compressive spanwise strain (cases B, F and H) are shown in
figure 28. At late times these flows are dominated by spanwise velocity fluctuations,
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which do not directly contribute to the spanwise vorticity visualized (note that the
contour interval in figure 28 is half that used in figure 27). For these cases, the
spanwise domain size decreases in time; the flows ultimately are forced to be nearly
two-dimensional because no large-scale spanwise variations can develop. These three
cases exhibit many small-scale vortical eddies with little overall large-scale coherence
or organization; this is especially true for cases B and H, which are stretched in the
cross-stream direction.

Cases SC, C, FC and D, all without spanwise strain, are shown in figure 29. In case
D, the computational domain size continually increases and the statistical sample of
eddies improves in time. The wake has reached a nearly constant width roughly equal
to that of case A, the other flow with cross-stream compression. Without spanwise
stretching, however, the vortical eddies apparently do not amalgamate as in case A,
instead becoming stretched in the streamwise direction as a result of the strain. To an
even greater extent than in case A, there are large non-vortical regions penetrating
the layer at later times.

The cases with the strain geometry of case C show marked variation in flow
structure as a result of the varying strain rate, even when compared at the same
value of total strain. As noted in § 3.3, the combination of vertical stretching and
streamwise compression reduces the computational domain to a point where the
streamwise eddy extent is prohibited from keeping pace with the flow width; the
simulation may not represent the infinite-domain problem well for long times. How-
ever, these cases are dominated by many small-scale structures and this limitation
may not be as severe as might be expected. As with cases B and H, which are
also stretched in the cross-stream direction, large-scale organized motions (with
their associated longer time scales) are apparently not able to develop or sustain
themselves in the presence of this strain. Examination of the flow visualization sug-
gests, as was found in § 4.3, that the straining in case FC is approaching the rapid
‘box distortion’ limit, with the small-scale vortical structures exhibiting coherence
along steep inclination angles of about 60◦ to 70◦. Readily apparent in figure 29(a)
is the greater wake width and weaker spanwise vorticity for the slowly strained
case SC.

4.5. Comparison with experiments

Experiments designed to subject wakes to uniform and constant strain rates can be
compared directly to the numerical results. The experiments of Reynolds (1962) and
Keffer (1965) are the spatially developing analogues of case A, whereas the tunnel
orientation used in Keffer (1967) results in a strain field that corresponds to that of
case B. The results of Elliott & Townsend (1981) can also be compared to case B,
although streamwise mean velocity fluctuations of up to 20% in these experiments
resulted in non-negligible values of a11. Liu et al. (1999) subjected a plane wake
to uniform and constant pressure gradients (both adverse and favourable). While
this does not correspond to constant strain rate (see Appendix A), their tunnel wall
profiles are not too different from those required to generate the spatially evolving
analogues of cases C and D. No experimental data are available for comparison to
cases E, F, G and H, although, as noted in § 3.3, a ‘longitudinally distorting tunnel’
that generated a strain geometry analogous to case F has been used to study strained
homogeneous turbulence by Tucker & Reynolds (1968). Note that the total strain
achieved in all these experiments is less than that attained in the simulations, although
many of the late-time simulation results may be of questionable physical relevance
because of computational domain size limitations.
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It is difficult to set up an experiment that is a good approximation to the idealized
strained wake. The streamwise flow development must be slow enough to ensure that
streamwise inhomogeneity does not become significant. Also, the sudden change in
tunnel cross-section causes flow separation near the entrance and exit of the distorting
duct and this causes local acceleration of the streamwise free-stream velocity, resulting
in an ‘effective strain’ that is not the same as that of the idealized problem. Reynolds
(1962) proposed a linear ‘graded imposition’ of the strain rate over an interval equal to
half the distorting duct length centred at the duct inlet. This ‘graded imposition’ was
then used to make predictions of the wake width for comparison to the experimental
results. It is unlikely that this could adequately account for the effects of the separation
and the later studies listed above did not utilize such corrections.

Results reported by Reynolds (1962) include mean velocity profiles for the largest
( 1

2
in.) diameter cylinder (including the associated values of the half-width and deficit)

and u′2 profile shapes for all three cylinders. Because of difficulties in measuring
the mean velocity profiles for the two smaller cylinders, wake widths for these two

cases were estimated from the width of the u′2 profiles. The velocity deficits are thus
unavailable for these two cases. The wake widths from these two smaller cylinders,

as estimated from the u′2 profiles, appear to decrease at the rate predicted by the
classical self-similar analysis over a limited central portion of the distorting duct. The
corresponding evolution of the wake velocity deficit cannot be confirmed as it was not
measured for these cases. The wake width of the largest cylinder was found to decrease
more slowly (nb ≈ −0.2) than the self-similar rate (nb = −0.5). Consistent with this,
the velocity deficit decays more rapidly than required for self-similarity. Reynolds
(1962) ascribed this lack of similarity to the structure of this wake as it entered
the straining duct relatively fewer diameters downstream from the cylinder. He also
argued that self-similarity would only be observed for cases in which the production
of turbulence associated with the wake shear was larger than that associated with the
global strain. However, the experimental values of nb and nU for this cylinder are in
line with the initial response to the distortion observed in case A, which is also not
evolving as predicted by the classical self-similar analysis.

Despite the mean compression in the cross-stream direction, Reynolds (1962)
measured rapidly growing wake widths near the inlet of the distorting section, with
the spreading rate even outpacing that associated with an unstrained wake. Although
several possible explanations for this are offered, it seems unphysical and disagrees
with the numerical results presented in figure 2 and with the favourable pressure
gradient cases of Liu et al. (1999), which also have a22 < 0. The use of a ‘graded
imposition’ of the strain also cannot account for this. The separation at the distorting
duct inlet results in a local increase and decrease of the mean convection velocity,
and it is likely that the rapid wake spreading at this location is associated with this
streamwise straining.

Reynolds (1962) found that the mean velocity profile shape was not significantly
affected by the strain, as observed in the simulations. In particular, it was still close to
Gaussian, decaying more rapidly at the edges of the wake. Despite this similarity of
the mean profile shape, the Reynolds number Rem does not decay at the appropriate
exponential rate, indicating difficulties with the measurements (the values in the last
column of table 1 in Reynolds (1962) should be constant). Although the shape of

the u′2 profiles is roughly the same throughout the distorting duct, no magnitudes are

given to assess whether u′2/U2
m is constant as expected for self-similarity.
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Whether or not the strained wakes of Reynolds (1962) were actually evolving
self-similarly was thus unclear, but further work in the same flow by Keffer (1965)
indicated that self-similar evolution is not observed. Using the same cylinders placed
at the same location upstream of the same distorting duct, Keffer observed nb = −0.35
for the two smaller diameter cylinders and a value even closer to zero for the 1

2
in.

diameter cylinder. By the end of the distorting duct all three wake widths are
approaching a constant, as observed in the simulations. When the smallest cylinder
was moved closer to the distorting duct inlet values of nb = −0.162 and nb = 0 were
obtained.

Keffer (1965) also made measurements of all non-zero components of the Reynolds
stress tensor. The measured magnitudes of the normal Reynolds stresses are ordered

as v′2 > u′2 > w′2, consistent with the results of the DNS presented in figure 11(a)
for case A. However, the experimentally measured turbulent kinetic energy decreases
monotonically (although not as rapidly as in an unstrained wake), in contrast to the
numerical results, in which q2 increases between τ = 4.4 and τ = 7.3 (figure 14a).

This intermediate period of growth is attributable to v′2, which grows (doubling in

magnitude) until becoming constant at about τ = 8.0. The experimental value of v′2
decays monotonically (although slowly), presumably indicating that the strain in the
experiments is relatively weaker than that in the computations.

Flow visualizations in the same study (Keffer 1965) ‘indicate a predominantly
strong motion of the large eddies’ with ‘a well-defined periodicity’, and that ‘the size
and intensity of the motion become more pronounced as the total strain increases’.
For large enough total strain ‘gaps appear in the turbulent structure of the wake’.
Measured energy spectra also indicate relatively more energetic large-scale motions
and less small-scale activity. The increased large-scale organization observed in this
flow is also in agreement with the DNS results presented in § 4.4 (figure 27b).

In later experiments, Keffer (1967) reversed the sign of the applied strain (case B) by
rotating the wake-generating cylinder 90◦ about the direction of the mean flow. Once
again, the flow was found not to follow the self-similar evolution, with its evolution
being better predicted by a ‘box distortion model’, at least for cases in which the wake
had undergone a period of development before the strain was imposed. According
to this ‘box distortion model’, the wake width follows the mean streamline distortion.
This corresponds to nb = 1.0 and is in agreement with the results of the DNS. Keffer
noted a ‘flattening’ of the mean velocity profile for large total strains that differs
from the universal velocity profile shape observed in the simulations. It seems likely
that the measurements may have been affected by the proximity of the end of the
distorting duct at this point.

The same strain geometry (expanding the wake in the cross-stream direction) was
examined by Elliott & Townsend (1981). The distance between the sidewalls of their
distorting tunnel changed by a factor of four throughout its length, similar to the
duct used in Keffer (1967). However, flow separation at the duct inlet and exit was
significant and the cross-sectional area was not constant, resulting in streamwise
strain (although the total strain throughout the full length of the distorting section
was small). Because of this, the strain rate in the Elliott & Townsend experiment is not
constant and must be determined by experimental measurement. The results suggest
that the strain is roughly constant for at least the central half of the distorting section
and, given the small total strain over the full length of this section, this experiment is
probably a reasonable approximation to the constant-strain-rate case B, at least away
from the inlet and exit of the distorting section.



110 M. M. Rogers

Unlike Keffer (1967), Elliott & Townsend (1981) do find the mean velocity deficit
profiles to be self-similar, even for large total strain. These profiles are nearly Gaussian,
but with a more rapid decay at the edges of the wake as observed in both the
simulations and in unstrained wakes. Their strained wake spreads even more rapidly
than the streamlines associated with their measured strain (and even faster than the
rate of spreading of the tunnel walls). For case B the wake width initially increases
more rapidly than the associated total strain, but for a22(t− t1) > 1.0 the two grow at
the same rate, i.e. nb = 1. At this point the experiment is already being affected by the
downstream end of the distorting duct. After a slight decrease, the magnitude of the
wake velocity deficit stays roughly constant in the experiment, as it does in the DNS.
The behaviour of the Reynolds stresses in the experiments and computations is also
similar. In both, the turbulent kinetic energy initially decays, but then becomes about

constant before increasing. The cross-stream fluctuation intensity v′2 profiles become

double-peaked and the spanwise fluctuation intensities w′2 increase significantly for
large total strain. In the experiments, the turbulence length scales become relatively
small compared to the flow width and eddies lose energy, with entrainment falling
sharply. This is consistent with the flow visualization of case B in § 4.4 (figure 28a).

Although not directly comparable to the constant-strain-rate cases considered here,
the constant-pressure-gradient flows of Liu et al. (1999) have much in common with
the simulation results. Liu et al. considered both adverse and favourable streamwise
pressure gradients, corresponding roughly to cases C and D, respectively. Consistent
with the previous experimental work and the present simulations, Liu et al. (1999)
found that adverse pressure gradients resulted in larger wake deficits and wider wakes
compared to the zero-pressure-gradient flow. Conversely, both the velocity deficit and
wake width decayed more rapidly in the presence of favourable pressure gradients.
The wake width in the mild favourable pressure gradient case approaches a constant
near the end of the distorting tunnel section; that in the stronger favourable pressure
gradient case is close to constant throughout the entire distorting section. The wake
width in the adverse pressure gradient case grows rapidly, although not necessarily

exponentially. The impact of the pressure gradient on the amplitude of u′2 is also
similar to that of the strain in simulations, with favourable pressure gradients resulting
in decreased fluctuation intensity levels compared to the zero-pressure-gradient case
and vice versa for the adverse pressure gradient flow.

5. Conclusions
Ten direct numerical simulations of time-evolving turbulent plane wakes subjected

to various constant and irrotational strains, both plane and axisymmetric, have been
generated and analysed. The evolutions of the wake mean velocity, the Reynolds
stresses, and various other turbulence statistics have been examined in detail and
compared to the predictions of different similarity solutions. Additionally, flow visu-
alizations of the numerical results have been used to investigate the vortical structure
of the strained wakes.

Many free shear flows, once developed, are observed to evolve self-similarly, with
the mean profiles of the various statistics maintaining the same shape as the flow
evolves. The profiles can thus be collapsed when scaled by a varying magnitude and
width. Scaled mean flow profiles are often fairly universal in shape, whereas those
for turbulent statistics are found to be more dependent on the particular conditions
used to generate the flow (e.g. Wygnanski et al. 1986; George 1989). Analysis of
experimental measurements in strained wake flows by Reynolds (1962) and Keffer
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(1965) indicates that while the profile shapes may be self-similar, magnitudes and
widths of these profiles do not evolve as predicted by classical self-similar analysis.

Examination of the equations governing the evolution of time-developing strained
plane wakes indicates the possibility of self-similar evolution. The classical self-
similar analysis, which assumes that all of the terms in the governing equations are
proportional to each other, leads to a unique self-similar solution if the viscous terms
in the mean momentum and Reynolds stress evolution equations are neglected. For
a given strain time history, the analytical integral mass flux deficit constraint (2.26)
defines how the product of the wake peak mean velocity deficit, Um, and the wake
width, b, must evolve. For the classical self-similar solution, the ratio of these two
quantities, the wake shear rate, must exhibit the same time-evolution behaviour as the
applied strain rate. These two constraints then determine the behaviour required of
Um and b. Additionally, the classical self-similar solution requires that all components
of the Reynolds stress tensor scale with the square of the velocity deficit Um, the
associated anisotropies being constant. For the constant applied strain rates considered
here, this solution requires exponential evolution of the wake width b, the wake peak
velocity deficit Um, and the magnitude of the Reynolds stresses Kij . This solution
is completely analogous to that found by previous investigators studying spatially
developing strained plane wakes.

Although intuitively appealing, this self-similar evolution is not internally consistent
for all strain geometries and does not describe the flow evolution observed in the
direct numerical simulations or in experimental work on the same flows. It is common
practice in self-similar analyses of high-Reynolds-number free shear flows to neglect
the viscous terms in the governing equations (there are no walls in the flow). For
unstrained wakes this is not necessary because the flow Reynolds number is constant
and the viscous terms scale like the other terms in the governing equations. For
strained wakes, however, the classical self-similar solution results in viscous terms
that have an exponential time dependence, as can be seen from equations (2.52) and
(2.50). If the strain-rate difference a11 − a22 is negative, initially small viscous terms
will remain small relative to the other terms in the equation. On the other hand, if
a11 > a22, the viscous terms will grow exponentially and at some point a balance with
the other terms will not be possible. The classical self-similar solution also fails if
a11 + a22 = 0. In this case, the classical scaling yields time-derivative and advection
terms in the mean momentum equation that sum to zero, with a balance between the
remaining Reynolds shear stress derivative and viscous terms being impossible.

The above considerations make it clear that if a self-similar evolution is to be
sustained for strained wakes, it must be different from the classical solution, at least
for strain geometries with a11 > a22 or a11 + a22 = 0. Thus solutions of greater
generality must be found. The assumption that each of the terms in the various
evolution equations grows at the same rate as each of the other terms is too limiting,
and alternative similarity solutions must be sought that make a balance possible
by grouping terms in the equations. Two such generalized ‘equilibrium similarity
solutions’ are derived in § 2.2.2.

Scaling the mean velocity profiles from each of the numerical simulations by the
time-varying peak deficit magnitude and half-width indicates that the shape of the
wake mean velocity profile is nearly universal and described well by the unstrained
wake profile f(η) = − exp(−2.548η2 − 0.896η4) reported by Wygnanski et al. (1986),
where f(η) is the self-similar shape function defined by equation (2.24). This profile
is similar to a Gaussian, but decays slightly faster to zero at the edges of the
wake. Universality of the mean profile shape has also been found in a broad variety
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of experimental measurements in ‘strained’ wake flows (e.g. Reynolds 1962; Hill
et al. 1963; Gartshore 1967; Narasimha & Prabhu 1972; Elliott & Townsend 1981;
Nakayama 1987; Nayeri et al. 1996; Beharelle et al. 1996 and others). Because this
shape represents the form of the mean velocity profile well, the problem of describing
the mean flow evolution is reduced to determining the time evolution of the peak
velocity deficit magnitude Um and the wake width b. The universality of f(η) also
implies that the product of the two scales Um and b is well-described throughout the
flow evolution by equation (2.26) or, for constant strain rate, equation (2.32).

Substituting the self-similar form (2.24) into the mean momentum equation makes
it possible to combine all the terms arising from the time-derivative and advection
terms into a time-evolving amplitude multiplied by a single function of the scaled
cross-stream variable η. Thus, instead of requiring four terms to be proportional
to the Reynolds shear stress derivative as in the classical self-similar analysis, only
a single term must be balanced. Substitution of assumed similarity forms into the
Reynolds stress equation also suggests groupings of terms that can be combined when
seeking a balance. Part of the time-derivative term is grouped with the advection term,
whereas the rest is lumped with the ‘production’ of Reynolds stress by the applied
strain. These two combinations must then balance with the wake shear production,
the viscous diffusion, and the combination of the turbulent transport, pressure–strain,
and dissipation. Combining these groups of terms results in the removal of several
constraints on the classical self-similar analysis and yields equilibrium similarity
solutions that have free parameters (D1, D2 and D3 for solution (2.54) and E1, E2 and
E3 for solution (2.55)), rather than unique similarity solutions.

The first equilibrium similarity solution (2.54) arises by considering a wake spread-
ing rate that makes the combination of the time-derivative and advection terms zero.
This necessitates a balance between the only remaining terms in the mean momen-
tum equation: the shear stress derivative and the viscous term. By construction this
similarity solution thus results in a viscous term that scales like the other term in the
mean momentum equation. The other equilibrium similarity solution (2.55) results
from assuming that the combination of the time-derivative and advection terms scales
like the shear-stress-derivative term. For the choice E2 = 1

2
the viscous term in the

mean momentum equation scales in the same way and it is therefore not necessary
to assume this term is negligible. The viscous term also scales like the other terms at
long times for any choice of E2 if the strain rate a22 is positive. From the simulation
results, it is found that E2 = 1

2
for cases with a22 6 0, suggesting that for physical

similarity solutions it is important for the viscous terms to be retained in the analysis.
The viscous diffusion of Reynolds stress is found to be negligibly small in the

simulated strained wakes, but the classical self-similar analysis has the same difficulties
with this term as it did with the viscous term in the mean momentum equation, namely
that exponential growth of the viscous diffusion terms prevents a balance at long times
when a11 > a22. For the equilibrium similarity solution (2.54) there are also limitations
on the strain rates that will permit the viscous diffusion terms to be balanced by
other terms in the Reynolds stress evolution equation. For the equilibrium similarity
solution (2.55) the choice E2 = 1

2
(or any E2 for a22 > 0) ensures that the viscous

diffusion terms can always be balanced. As with the viscous term in the mean
momentum equation, this choice of E2 ensures that the viscous diffusion terms are
proportional to the other terms in the equation, even if small.

For the second equilibrium similarity solution (2.55), the first bracketed time-
evolution terms in both the mean momentum equation (2.49) and the Reynolds stress
transport equation (2.50) are the same and not equal to zero. Thus all the terms in the
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mean momentum equation and each of the Reynolds stress equations are proportional
to each other for self-similarity. The viscous terms in both equations scale in the same
way and ensuring that they balance in one equation will ensure that they balance
in the other. If the turbulent transport, pressure–strain, and dissipation terms all
individually scale like the other terms in the equation, then all of the pressure–strain
terms Παβ/Kαβ should scale in the same way. Combined with the pressure strain
condition (2.42), this requires that the normal Reynolds stresses all scale in the same
way. This is not, in general, observed in the simulations, suggesting that it is only the
combination of the pressure–strain, turbulent transport, and dissipation terms that
scales like the other groupings of terms in the Reynolds stress equation, not these
terms individually.

This is not necessarily the case for the first equilibrium similarity solution (2.54),
which results from the first bracketed time-evolution term in the mean momentum
and Reynolds stress equations being zero. This uncouples the different equations
from each other and the bracketed time-evolution terms from one equation do not
scale like those in the other equations. Because of this, the Παβ/Kαβ ratios are not
necessarily proportional and the condition (2.42) does not force the different normal
Reynolds stresses to all remain in proportion to each other. However, this equilibrium
similarity solution also can be further generalized if the pressure–strain, turbulent
transport, and dissipation terms are only required to scale when considered together
rather than individually. In this case no constraint of any kind needs to be imposed
on the form of two of the normal Reynolds stresses, K22 and K33.

The mathematical existence of self-similar solutions does not ensure that they will
be realized in practice, and the direct numerical simulation results must be used to de-
termine which, if any, of the similarity solutions describes the observed flow evolution.
As noted above, the scales Um and b do not, in general, evolve as predicted by the clas-
sical solution. The Reynolds stresses for all the simulated flows do not scale with U2

m

(except perhaps at long times for case E, in which the strain decreases in significance
relative to the wake shear) and the Reynolds stress anisotropies are not constant,
with individual Reynolds stress terms not even being in constant ratio with the tur-
bulent kinetic energy, let alone with U2

m. This continued variation of the Reynolds
stress anisotropies is in agreement with experiments (Keffer 1965) and with results of
strained homogeneous turbulence (Tucker & Reynolds 1968; Marechal 1972).

Instead of changing as predicted by the classical self-similar solution, the strained
wake widths respond to the strain in the cross-stream direction. If the cross-stream
direction is compressed, the wake width becomes approximately constant. If the
cross-stream direction is stretched, then the wake ultimately spreads exponentially
at the same rate as predicted by a simple ‘box distortion’ of the flow by the mean
strain. If the cross-stream direction is unstrained, the wake spreads at about the same
rate as in the corresponding unstrained flow. This behaviour is correctly predicted by
the second equilibrium similarity solution (2.55) for all the cases examined and also
correctly predicted by the first equilibrium similarity solution (2.54) when a22 > 0.

Given the above behaviour of the wake width and the similarity of the mean
velocity profile, the integral constraint (2.26) can be used to determine the behaviour
of the wake velocity deficit. Knowing how the wake width and velocity deficit evolve,
one can predict the evolution of the wake shear. For most strain geometries this shear
decays (e.g. nU − nb < 0, see table 3) and the flows approach pure straining flows.
In one case simulated (case E), the shear increases and the constant applied strain
should eventually become insignificant. This flow ultimately exhibits similarities to
unstrained wakes, as discussed in § 4.1.3. For two strain geometries (cases C and G),
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the wake width and velocity deficit change at the same rate, implying a constant wake
shear rate.

The mean strain has a strong impact on the evolution of the mean velocity profile,
causing either the width or the deficit (or both) to change exponentially (the exception
being case G, the axisymmetric strain case designed with the hope of achieving
statistical stationarity). However, even at lower strain rates, the turbulence is unable
to keep pace with the changing mean velocity deficit. The ratio of the turbulent kinetic
energy to U2

m is not constant (except perhaps at late times for case E, in which the
importance of the applied strain is decreasing in time). Although the kinetic energy
levels do tend to increase or decrease along with the increase or decrease of U2

m, they
do not change as rapidly, and during the course of each simulation the turbulent
kinetic energy varies at most by a factor of about five, compared to a factor of up to
over 5000 (case D) for U2

m.
The similarity analysis that leads to the above equilibrium similarity solutions also

requires that the Reynolds stress profiles evolve self-similarly according to equation
(2.28a), namely that the profile shapes are the same up to a time-dependent amplitude
Kij and have a width proportional to that of the mean velocity profile. While the
latter assumption is found to accurately describe the results of both the numerical
simulations and the experimental data, the first is not completely achieved by all the
Reynolds stress components for all the various strain geometries considered. Despite
this, equation (2.28a) does at least roughly describe the observed behaviour in nearly
all instances by the end of the simulations. Given this poorer agreement with the
basic similarity assumption, it is not surprising that the computational Reynolds
stress results do not agree perfectly with the those predicted by similarity analysis.
Nonetheless, the equilibrium similarity solutions do a reasonable job of describing the
different evolutions of the various Reynolds stress components, at least asymptotically,
in contrast to the classical self-similar solution, which incorrectly predicts that all the
Reynolds stresses scale like U2

m.
The relative magnitude of the dissipation rate of kinetic energy for the different

cases is similar to that of the kinetic energy, resulting in turbulence time scales q2/ε
that are nearly independent of strain geometry and strain rate. During the course
of the simulations, this time scale differs from that of the corresponding unstrained
wake by less than a factor of two. Unlike the other turbulence statistics examined,
the variation of this time scale with total strain shows wide scatter for flows strained
at different rates. These data are better collapsed by simply plotting against the
simulation time rather than total strain, again indicating that the turbulence time
scale is only weakly affected by the imposed strain. This time scale cannot be too
closely tied to the mean wake shear either, however, since this shear rapidly decreases
in many cases without affecting the q2/ε evolution. Apparently the initial conditions
have a lasting impact on the turbulence, with the turbulence being slow to respond
to the changes in the mean flow rapidly brought about by the applied strain. This
slow response by the turbulence to the changes in the mean flow may partly explain
why Townsend (1980) found that the linearized rapid-distortion equations do a good
job in predicting the Reynolds stress anisotropy development in the strained wake
experiment of Elliott & Townsend (1981).

As observed for strained homogeneous turbulence, compression in a particular
coordinate direction leads to dominance of the velocity fluctuation component in that
direction as a result of turbulence production by the applied strain. This is particularly
apparent in flows with spanwise compression, which ultimately have virtually all of
the turbulent kinetic energy in the spanwise component. It is less apparent in case E, in
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which the mean wake shear increases in time and the strain becomes proportionately
less significant. The strain ‘production’ term acts as a destruction term for velocity
components in directions of mean expansion, and the relative magnitude of such
components is reduced.

With the exception of the turbulence time scale, the response of the turbulence to
different rates of strain is reasonably well collapsed by plotting against total strain,
at least for the strain geometry considered in § 4.3. For a given value of total strain,
reducing the strain rate results in increased wake thickness, decreased mean velocity
deficit, and decreased normal Reynolds stresses levels.

The vortical structure of the turbulence in the strained wakes depends on the
geometry of the imposed strain. Compression in the cross-stream direction results
in wakes of constant width, with relatively few vortical eddies spanning the width
of the flow. Nearly irrotational fluid can be found across the entire flow at many
streamwise locations. If the wake is also stretched in the spanwise direction, like-sign
spanwise vorticity tends to amalgamate and create a more organized wake structure.
Conversely, flows that are stretched in the cross-stream direction contain many small-
scale vortical structures with little large-scale organization. When such flows are also
compressed in the streamwise direction a relatively irrotational zone develops near
the wake centreline, particularly for slower strain rates. The vortical structure of flows
with no cross-stream strain is similar to that of the unstrained wake.

In summary, strained wakes apparently do evolve self-similarly, but in accordance
with equilibrium similarity solutions that are more complicated than the classical
self-similar solution, in which each term is required to scale like all the others.
Profiles of the various statistical quantities do develop a self-similar shape and can be
reasonably collapsed by scalings of magnitude and width. The observed behaviour in
the numerical simulations suggests that groups of terms in the governing equations
combine to make a balance possible. The pressure–strain term in the Reynolds stress
transport equation apparently does not, in general, scale like the other terms in the
equation, but rather scales only in combination with the turbulent transport and
dissipation terms. The similarity solutions that are consistent with the numerical
results have the property that the viscous terms can be retained in the similarity
analysis because they scale like the other terms in the equations. Thus despite being
small, these terms maintain the same relative importance throughout the self-similar
evolution. The wake mean velocity profile shape is found to be universal and the
fairly rapid changes in magnitude and width brought about by the applied strain are
well-predicted by the generalized equilibrium similarity solutions. The impact of the
applied strain on the turbulence, however, is slower to reach a self-similar state and
less pronounced than the impact on the mean flow scales Um and b. This suggests
that the flow evolution may be affected by the initial conditions of the turbulence for
a relatively long time.

Thanks are due to Bill George and Dan Ewing for help with the self-similar analysis
and to Jim Brown and Nagi Mansour for helpful comments on a draft of this paper.
The computer time required to generate the numerical simulations was provided by
the NAS facility at the NASA Ames Research Center.

Appendix A. Self-similarity for flows with time-varying strain rate
Although self-similar evolution will not be achieved if the strain rate varies ar-

bitrarily in time, there are functional forms of aij(t) that do permit the possibility
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of self-similar evolution. These correspond to the temporally evolving analogues of
spatially evolving plane wakes with free-stream velocities that vary as U1 ∝ (1−ξx)m,
with ξ being constant. The pressure gradient in such flows can be determined from
the Bernoulli equation to be

dCp
dx

=
dP̄ /dx
1
2
ρ(U0

1 )2
= 2mξ(1− ξx)2m−1, (A 1)

where U0
1 is the positive free-stream velocity at x = 0.

Converting the above spatial variation of free-stream velocity to a temporal varia-
tion of strain by computing a11 = ∂U1/∂x in a frame moving with velocity U1(x) we
have

a11 =
1

((1− m)/m)t+ t0
, t0 =

−1

mU0
1ξ
, (A 2)

with a22 = −a11 and a33 = 0. The sign of t0 (and mξ) depends on the sign of the
pressure gradient, with positive t0 (negative mξ) associated with favourable pressure
gradients and negative t0 (positive mξ) resulting from adverse pressure gradients.
Substituting this time-varying strain into equation (2.26), one can show that

Us(t)δ(t) = U0
s δ

0z(t)
2m
m−1 where z(t) = 1 +

(
1− m
m

)
t

t0
=

1

t0a11(t)
. (A 3)

Not surprisingly, one can use the mean momentum equation (2.27) and the Reynolds
stress transport equation (2.29) to show that

δ(t) = δ0z(t)Dδ , Us(t) = U0
s z(t)

DM , Kij(t) = K0
ijz(t)

Dij , (A 4)

for the bracketed time-varying terms in these equations to be proportional. As with the
case of constant strain rate considered in § 2.2, the solution for the various exponents
arises from the constraints provided by the integrated mean momentum equation, the
Reynolds shear stress term in the mean momentum equation, the shear production

terms in the u′21 and u′1u′2 equations, and the pressure–strain condition (2.31b). For
this form of time-varying strain rate, these constraints lead to a ‘classical’ self-similar
solution of the form

Dδ =
3m− 1

2(m− 1)
, (A 5a)

DM =
m+ 1

2(m− 1)
, (A 5b)

D11 = D22 = D33 = D12 =
m+ 1

m− 1
. (A 5c)

Note that, as in the constant-strain-rate case, the mean shear rate Us/δ associated with
the wake remains proportional to the time-varying strain rate and all the Reynolds
stresses grow at the same rate. The solution (A 5) is invalid when m = 1. However, for
m = 1 the strain given by equation (A 2) is constant and the appropriate solutions are
given in § 2.2. The case m = 0 corresponds to the classical solution for an unstrained
wake.

For this case of time-varying strain rate, equations (2.49) and (2.50) remain un-
changed except that a11 and a22 are not constant, but time-dependent and given by
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equation (A 2). Substituting the solution (A 5) into equation (2.49) yields[
(1− m)a11

2m

]
ηf(η) +

[
K0

12t0a11

U0
s δ

0

]
k12(η) = −ν

[
1

(δ0)2
(t0a11)

3m−1
m−1

]
df

dη
. (A 6)

Unlike the constant-strain-rate case, the first term of this equation cannot be zero
because m 6= 1. The viscous term scales like the other terms in the equation only for
the unstrained case m = 0. For favourable pressure gradients the viscous term grows
faster than the other terms and no balance can be achieved for long times, indicating
that this self-similar solution is not sustainable except for adverse pressure gradients
(a11 < 0).

As with the constant-strain-rate case, an equilibrium similarity solution exists in
which the first term in equations (2.49) and (2.50) is zero. In this case Dδ = DM =
m/(m − 1) and D12 = 0, corresponding to the wake shear being constant. If the
pressure–strain condition (2.42) is to be satisfied, then the Παα terms are constant and
the normal Reynolds stresses are given by the three-parameter family (F1, F2, F3) of
solutions given by

K11(t) = F1z(t) + (K0
11 − F1)z(t)

2m
m−1 , (A 7a)

K22(t) = F2z(t) + (K0
22 − F2)z(t)

−2m
m−1 , (A 7b)

K33(t) = K0
33 + F3t/t0. (A 7c)

If the pressure–strain terms scale like the other terms in the normal Reynolds stress
equations only when combined with the dissipation and/or transport terms, then
K22(t) and K33(t) are completely undetermined by similarity constraints, while K11

retains the above form. Requiring that the viscous diffusion terms remain smaller
than the other terms in the Reynolds stress equations limits the possible values of m
and ξ for which sustained similarity solutions exist (m > −1 for ξ > 0 and m 6 −1
for ξ < 0).

A second equilibrium similarity solution, in which the first two terms of equations
(2.49) and (2.50) are proportional, also exists. In this case, as with the constant-strain-
rate flow, the pressure–strain rate terms must combine with the turbulent transport
and dissipation terms to scale with the other terms in the equation. The generalized
equilibrium similarity solution for this case is a two-parameter family (F1, F2) of
solutions given by

q(t) =
F1 − 1

F1z(t)
m+1
m−1 − 1

, a11 = −a22 =
1

t0z(t)
, (A 8a)

δ(t)

δ0
= q(t)F2z(t)

m
m−1 ,

Us(t)

U0
s

= q(t)−F2z(t)
m
m−1 ,

K12(t)

K0
12

= q(t), (A 8b)

K11(t)

K0
11

= q(t)−2F2z(t)
2m
m−1 ,

K22(t)

K0
22

= q(t)2F2+2z(t)
−2m
m−1 ,

K33(t)

K0
33

= q(t). (A 8c)

For this solution the wake shear does not scale like the applied strain rate and the
Reynolds stresses scale differently from each other for non-zero strain. For the viscous
terms to scale like the other terms in the equations, F2 must equal − 1

2
. Note that this

value of F2 also makes the exponent on the q(t) terms in all the Reynolds stress terms
1. This choice of F2 is analogous to the selection E2 = 1

2
in the constant-strain-rate

case, namely this is the only value of F2 that ensures both a wake width reduction
under compression (a22 < 0) as well as viscous terms that do not outgrow the other
terms in the governing equations.
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A case of practical interest occurs when m = 1
2
. For this value of m the pressure

gradient given by equation (A 1) is constant, as in the spatially evolving flows studied
experimentally by Liu et al. (1999). The strain rate evolution corresponding to this
constant streamwise pressure gradient is

a11 =
1

t+ t0
, a22 = −a11, a33 = 0. (A 9)

Thus in these experiments the effective strain rate increases in magnitude (becomes
more negative) with downstream distance in adverse pressure gradients (t0 < 0), while
for favourable pressure gradients (t0 > 0) it decreases with downstream distance. The
classical solution (A 5) reduces to

Dδ = − 1
2
, DM = − 3

2
, (A 10a)

D11 = D22 = D33 = D12 = −3, (A 10b)

while the similarity solution (A 8) (with F2 = − 1
2
) becomes

z(t) =
t0 + t

t0
, q(t) =

F1 − 1

F1z(t)3 − 1
, (A 11a)

δ(t)

δ0
= q(t)−1/2z(t)−1,

Us(t)

U0
s

= q(t)1/2z(t)−1, (A 11b)

K12(t)

K0
12

=
K33(t)

K0
33

= q(t),
K11(t)

K0
11

= q(t)z(t)−2,
K22(t)

K0
22

= q(t)z(t)2. (A 11c)

According to this similarity solution, δ should increase like t1/2 for large times,
whereas it is expected to decay like t−1/2 for the classical solution. Examination of the
experimental data shows that the wake widths increase in all cases, albeit minimally
for the strong favourable pressure gradient case. Thus, at least for this time-varying
strain-rate case, the equilibrium similarity solution (A 8) better describes the evolution
of the mean velocity field, as was found for the constant-strain-rate cases.
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